scholarly journals Influence of four nematicides on soil nitrogen mineralisation and nitrogen uptake hy white clover in a yellow-grey earth

1975 ◽  
Vol 18 (2) ◽  
pp. 155-162 ◽  
Author(s):  
D.J. Ross ◽  
Barbara A. McNeilly
1986 ◽  
Vol 29 (1) ◽  
pp. 49-53 ◽  
Author(s):  
D. C. Edmeades ◽  
G. Rys ◽  
C. E. Smart ◽  
D. M. Wheeler

2015 ◽  
Vol 5 (1) ◽  
pp. 24
Author(s):  
J. M. Finnan ◽  
J. I. Burke ◽  
T. M. Thomas

<p>A four year experiment was conducted at a site in the south-east of Ireland in which medium and high input conventional winter wheat production systems were compared to no input and low input systems in which winter wheat was direct drilled into an understory of white clover. Whole crop and grain yields from all systems were strongly related to external input levels, yields from bicropped treatments were poor. Nitrogen uptake and grain yields from the conventional treatments declined during the course of the study whereas nitrogen uptake and yields from bicropped treatments were more stable. Fertiliser N application significantly depressed biological production efficiency and altered biomass partitioning. The proportion of biomass partitioned to the stem decreased with fertiliser N, differences between treatments persisted until final harvest. Although the clover sward was still present in the fourth year, this component of the bicrop was gradually replaced by weeds as the experiment progressed in spite of several attempts to control weeds. It is suggested that further research is needed to identify a clover management strategy which ensures the persistence of the white clover sward and allows it to enrich soil fertility in such a way as to be of benefit to the accompanying wheat crop.</p>


1969 ◽  
Vol 49 (3) ◽  
pp. 313-318 ◽  
Author(s):  
D. C. Munro

Initial nitrate-nitrogen content of the soil gave a correlation coefficient (r) of 0.93 with yields and with total nitrogen uptake of Brussels sprouts plants (Brassica oleracea var. gemmifera DC., Jade Cross). Soil nitrogen extracted with 0.01 M NaHCO3 gave r values of 0.76 with yields and 0.75 with nitrogen uptake. Nitrate incubation results from leached, moist soil samples gave r values of 0.59 with yields and 0.56 with nitrogen uptake. However, air-drying of soil samples prior to leaching and incubation resulted in r values of only 0.15 and 0.11 with yields and nitrogen uptake, respectively. Available nitrogen determined by incubation without previous leaching of the soil samples gave high r values because of the influence of the initial nitrate nitrogen in the soil.


2003 ◽  
Vol 54 (4) ◽  
pp. 353 ◽  
Author(s):  
Victor O. Sadras ◽  
Jeffrey A. Baldock

Power laws describe the relationships between the number N (s) and the size s of daily rainfall events, i.e. N (s) ~ s–τ, with higher τ corresponding to sites or seasons with greater frequency of small rainfall events. This paper tested the hypothesis that the rate of soil nitrogen mineralisation increases with increasing exponent τ, as affected by both spatial and temporal sources of variation. Rates of nitrogen mineralisation in an uncropped sandy loam soil were calculated using a simulation model with detailed nitrogen and water balances, and long-term weather data for 6 Australian locations in a range of annual rainfall from 260 to 360 mm. Daily rates of mineralisation were calculated using actual rainfall, and variable or fixed temperature and evaporative demand. The annual pattern of mineralisation rate, calculated as a function of rainfall and variable temperature and evaporative demand, was bimodal with peaks in April and November. These peaks disappeared and differences among locations were reduced when the effects of temperature and evaporative demand were removed. Under constant temperature and evaporative demand, mineralisation rates between April and November were 68% greater than rates between December and March. In the former period, characterised by a high frequency of small rainfall events, monthly mineralisation rate was a direct function of the amount of rainfall. In contrast, mineralisation was independent of the amount of rainfall during the period of larger, less frequent rainfall events from December to March. Parameter τ accounted for 75% of the variation in mineralisation rate in the period December–March and it also accounted for a substantial part of the variation between periods.


Sign in / Sign up

Export Citation Format

Share Document