The deep sea synaptidProtankyra brychia(Echinodermata: Holothuroidea) and its near-surface dwelling planktotrophic larva,Auricularia nudibranchiata

Sarsia ◽  
2003 ◽  
Vol 88 (3) ◽  
pp. 159-174 ◽  
Author(s):  
David L. Pawson ◽  
John D. Gage ◽  
G. M. Belyaev ◽  
A. N. Mironov ◽  
A. V. Smirnov
2020 ◽  
Author(s):  
Xiyang Dong ◽  
Jayne E. Rattray ◽  
D. Calvin Campbell ◽  
Jamie Webb ◽  
Anirban Chakraborty ◽  
...  

AbstractAt marine cold seeps, gaseous and liquid hydrocarbons migrate from deep subsurface origins to the sediment-water interface. Cold seep sediments are known to host taxonomically diverse microorganisms, but little is known about their metabolic potential and depth distribution in relation to hydrocarbon and electron acceptor availability. In this work, we combined geochemical, metagenomic and metabolomic measurements in distinct sediment redox regimes to profile microbial activities within the uppermost 350 cm of a newly discovered cold seep in the NW Atlantic deep sea (2.3 km water depth). Depth-resolved metagenomic profiling revealed compositional and functional differentiation between near-surface sediments (dominated by Proteobacteria) and deeper subsurface layers (dominated by Atribacteria, Chloroflexi, Euryarchaeota and Lokiarchaeota). Metabolic capabilities of community members were inferred from 376 metagenome-assembled genomes spanning 46 phyla (including five novel candidate phyla). In deeper sulfate-reducing and methanogenic sediments, various community members are capable of anaerobically oxidizing short-chain alkanes (alkyl-CoM reductase pathway), longer-chain alkanes (fumarate addition pathway), and aromatic hydrocarbons (fumarate addition and subsequent benzoyl-CoA pathways). Geochemical profiling demonstrated that hydrocarbon substrates are abundant in this location, thermogenic in origin, and subject to biodegradation. The detection of alkyl-/arylalkylsuccinate metabolites, together with carbon isotopic signatures of ethane, propane and carbon dioxide, support that microorganisms are actively degrading hydrocarbons in these sediments. Hydrocarbon oxidation pathways operate alongside other deep seabed metabolisms such as sulfide oxidation, hydrogen oxidation, carbon fixation, fermentation and reductive dehalogenation. Upward migrated thermogenic hydrocarbons thus sustain diverse microbial communities with activities that affect subseafloor biogeochemical processes across the redox spectrum in deep sea cold seeps.


Author(s):  
Daniel O.B. Jones ◽  
Claudia H.S. Alt ◽  
Imants G. Priede ◽  
William D.K. Reid ◽  
Benjamin D. Wigham ◽  
...  

1991 ◽  
Vol 89 (4B) ◽  
pp. 1852-1853
Author(s):  
Roger D. Flood ◽  
Patricia L. Manley ◽  
Mary I. Scranton

Author(s):  
K.J. Eckelbarger ◽  
L. Watling ◽  
Heidi Fournier

Some aspects of the reproductive biology of the polychaete Gorgoniapolynoe caeciliae have been described for the first time. Gorgoniapolynoe caeciliae is a deep-sea commensal species associated with Candidella imbricata, an octocoral that populates the New England Seamount chain. Gorgoniapolynoe caeciliae is a dioecious species with an equal sex ratio and fertile segments throughout most of the adult body. The gonads of both sexes are associated with genital blood vessels emerging from the posterior surface of most intersegmental septa. In the female, oogenesis is intraovarian with oocytes being retained within the ovary until vitellogenesis is completed. The largest female examined contained over 3000 eggs with a maximum diameter of 80–90 μm. In the male, the testes are repeated in numerous segments and consist of small clusters of spermatogonia, spermatocytes, and early spermatids associated with the walls of the genital blood vessels. Early spermatids are shed into the coelom where they complete differentiation into mature ect-aquasperm with a spherical head (4 μm), a small cap-like acrosome, and a short mid-piece with four mitochondria. Indirect evidence suggests that this species is an annual breeder that releases its gametes into seawater and produces a planktotrophic larva following fertilization. The reproductive biology of G. caeciliae is consistent with that of most other polynoids including many shallow water species suggesting that phylogenetic history strongly shapes its biology.


1986 ◽  
Vol 23 (7) ◽  
pp. 959-966 ◽  
Author(s):  
D. J. Huntley ◽  
M. K. Nissen ◽  
J. Thomson ◽  
S. E. Calvert

In a previous paper it was shown that thick-source α counting is a simple means for determining Th, U, Th-230 excess, and Pa-231 excess concentrations, and hence sedimentation rates, for deep-sea sediments. Here it is shown that radon escape can lead to inaccurate results if powdered samples are used and that this problem can be overcome by preparing samples as a borate glass before measurement. Glassed samples also permit a novel measurement of the Ra-226 content by measurement of the post-fusion buildup of Rn-222, a determination shown to be necessary for near-surface sediments that have a deficit of Ra-226. It is also shown that Po-210 is lost during the fusion and that this loss can be allowed for in the calculations.The above observations are found on comparisons of measured and calculated α count rates for several Th and U standards and on comparisons with α spectrometry results from four sets of deep-sea core samples.


1996 ◽  
Vol 45 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Robert S. Anderson ◽  
Bernard Hallet

AbstractMagnetic susceptibility profiles χ(z) in loess sequences reflect a combination of two climatically modulated processes: dust deposition and pedogenic development. Prominent soils with high χ values, for example, likely reflect periods of slow dust deposition, and warm wet conditions favorable for rapid chemical weathering. To refine our understanding of the climate records contained in loess, we develop a numerical model as a tool for exploring quantitatively the integrated record of the temporal variation in rates of loess aggradation and soil development contained in χ profiles. In our model, the aggrading loess is pedogenically altered in a reactive zone near the ground surface. The strength of the χ signal is dictated by both the depth-dependent intensity of pedogenic processes and the rate of dust accumulation, which dictates the total time a loess parcel spends in the near-surface reactive zone. The model can accommodate both pedogenic production of magnetically susceptible minerals and arrival of magnetically susceptible grains as eolian dust. To explore the model performance and develop a sense of time and length scales implicit in χ profiles, we first examine simple synthetic cases with idealized steady and cyclic climatic forcing. Reported χ profiles in three Chinese loess sequences at varying distances from the western China dust source are then modeled in two illustrative ways: (i) by imposing a specific dust deposition rate history that is proportional to the dust accumulation rate history reported from western Pacific deep-sea cores, allowing the time variation of pedogenic rates to be calculated directly from χ profiles; and (ii) by imposing both dust accumulation and pedogenic rate histories that are independently scaled by the deep-sea δ18O history, which reflects global climate cycles to which regional climate forcing is linked. We find that the zone of pedogenic activity is roughly 0.5–1.0 m thick, both deposition rate and pedogenic intensity have varied dramatically over the last 140,000 yr, the age structure of the Luochuan loess sequence is best fit by driving the model with the δ18O record, and environmental conditions must have been anomalously favorable for pedogenesis during isotope stage 3 at all three sites. Finally, we advocate the assembly of a variety of data types at a suite of sites within any loess field that taken together will better constrain the temporal and spatial patterns of climatically modulated deposition and pedogenic processes.


Author(s):  
Dominique Boeuf ◽  
Bethanie R. Edwards ◽  
John M. Eppley ◽  
Sarah K. Hu ◽  
Kirsten E. Poff ◽  
...  

Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling and export, little is known about the biotic composition, origins, and variability of sinking particles reaching abyssal depths. Here, we analyzed particle-associated nucleic acids captured and preserved in sediment traps at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9-month time-series, Bacteria dominated both the rRNA-gene and rRNA pools, followed by eukaryotes (protists and animals) and trace amounts of Archaea. Deep-sea piezophile-like Gammaproteobacteria, along with Epsilonproteobacteria, comprised >80% of the bacterial inventory. Protists (mostly Rhizaria, Syndinales, and ciliates) and metazoa (predominantly pelagic mollusks and cnidarians) were the most common sinking particle-associated eukaryotes. Some near-surface water-derived eukaryotes, especially Foraminifera, Radiolaria, and pteropods, varied greatly in their abundance patterns, presumably due to sporadic export events. The dominance of piezophile-like Gammaproteobacteria and Epsilonproteobacteria, along with the prevalence of their nitrogen cycling-associated gene transcripts, suggested a central role for these bacteria in the mineralization and biogeochemical transformation of sinking particulate organic matter in the deep ocean. Our data also reflected several different modes of particle export dynamics, including summer export, more stochastic inputs from the upper water column by protists and pteropods, and contributions from sinking mid- and deep-water organisms. In total, our observations revealed the variable and heterogeneous biological origins and microbial activities of sinking particles that connect their downward transport, transformation, and degradation to deep-sea biogeochemical processes.


2020 ◽  
Vol 117 (47) ◽  
pp. 29292-29298 ◽  
Author(s):  
Joel D. Blum ◽  
Jeffrey C. Drazen ◽  
Marcus W. Johnson ◽  
Brian N. Popp ◽  
Laura C. Motta ◽  
...  

Mercury isotopic compositions of amphipods and snailfish from deep-sea trenches reveal information on the sources and transformations of mercury in the deep oceans. Evidence for methyl-mercury subjected to photochemical degradation in the photic zone is provided by odd-mass independent isotope values (Δ199Hg) in amphipods from the Kermadec Trench, which average 1.57‰ (±0.14,n= 12, SD), and amphipods from the Mariana Trench, which average 1.49‰ (±0.28,n= 13). These values are close to the average value of 1.48‰ (±0.34,n= 10) for methyl-mercury in fish that feed at ∼500-m depth in the central Pacific Ocean. Evidence for variable contributions of mercury from rainfall is provided by even-mass independent isotope values (Δ200Hg) in amphipods that average 0.03‰ (±0.02,n= 12) for the Kermadec and 0.07‰ (±0.01,n= 13) for the Mariana Trench compared to the rainfall average of 0.13 (±0.05,n= 8) in the central Pacific. Mass-dependent isotope values (δ202Hg) are elevated in amphipods from the Kermadec Trench (0.91 ±0.22‰,n= 12) compared to the Mariana Trench (0.26 ±0.23‰,n= 13), suggesting a higher level of microbial demethylation of the methyl-mercury pool before incorporation into the base of the foodweb. Our study suggests that mercury in the marine foodweb at ∼500 m, which is predominantly anthropogenic, is transported to deep-sea trenches primarily in carrion, and then incorporated into hadal (6,000-11,000-m) food webs. Anthropogenic Hg added to the surface ocean is, therefore, expected to be rapidly transported to the deepest reaches of the oceans.


Author(s):  
Philip Baker ◽  
Ulrike Minzlaff ◽  
Alexandra Schoenle ◽  
Enrico Schwabe ◽  
Manon Hohlfeld ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document