Population-based reference intervals for ferritin, iron, transferrin and transferrin saturation and prevalence of iron deficiency in 6–12-year-old children: the Health Oriented Pedagogical Project (HOPP)

Author(s):  
Anne Merete Øfsti Eie ◽  
Martin Frank Strand ◽  
Per Morten Fredriksen ◽  
Morten Lindberg
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gorkem Sezgin ◽  
Paul Monagle ◽  
Tze Ping Loh ◽  
Vera Ignjatovic ◽  
Monsurul Hoq ◽  
...  

Abstract Low serum ferritin is diagnostic of iron deficiency, yet its published lower cut-off values are highly variable, particularly for pediatric populations. Lower cut-off values are commonly reported as 2.5th percentiles, and is based on the variation of ferritin values in the population. Our objective was to determine whether a functional approach based on iron deficient erythropoiesis could provide a better alternative. Utilizing 64,443 ferritin test results from pediatric electronic health records, we conducted various statistical techniques to derive 2.5th percentiles, and also derived functional reference limits through the association between ferritin and erythrocyte parameters: hemoglobin, mean corpuscular volume, mean cell hemoglobin concentration, and red cell distribution width. We find that lower limits of reference intervals derived as centiles are too low for clinical interpretation. Functional limits indicate iron deficiency anemia starts to occur when ferritin levels reach 10 µg/L, and are largely similar between genders and age groups. In comparison, centiles (2.5%) presented with lower limits overall, with varying levels depending on age and gender. Functionally-derived limits better reflects the underlying physiology of a patient, and may provide a basis for deriving a threshold related to treatment of iron deficiency and any other biomarker with functional outcomes.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-43
Author(s):  
Michael Auerbach ◽  
Carlo Brugnara ◽  
Steve Staffa

It is estimated anemia affects over 30% of the world's population, with iron deficiency (ID) the overwhelmingly most common cause. Whether absolute due to blood loss and/or iron sequestration to underlying morbidity, the need for repletion especially in females, is a formidable medical issue. The diagnosis of iron deficient erythropoiesis has been traditionally based on the biochemical parameters ferritin and percent transferrin saturation (TSAT), mean cell volume and hemoglobin (Hb) concentration. In recent years, reticulocyte Hb content has emerged as a parameter helpful in identifying iron deficient erythropoiesis and informing a need, or lack thereof, for replacement. 556 consecutive, non-selected patients referred for diagnosis and/or treatment of anemia were included in this diagnostic study to compare the performance of reticulocyte hemoglobin equivalent (RET-He) versus traditional biochemical markers for diagnosis and treatment of IDA. CBC, serum ferritin, iron and TSAT were performed as clinically indicated. RET-He was measured with a Sysmex XN-450 analyzer on the residual CBC sample. 556 patients were studied at baseline and 150 were subsequently treated with intravenous (IV) iron. 240/556 were seen at follow-up, with 57 treated and 183 not treated with IV iron. At baseline, ret-He, positively correlated with Hb (Spearman correlation (rho)=0.365, P < 0.001), MCV (rho=0.576, P < 0.001), MCH (rho=0.777, P < 0.001), serum iron (rho=0.526, P < 0.001) and TSAT (rho=0.492, P < 0.001). Serum iron, and TSAT (but not serum ferritin or MCV, or absolute reticulocyte count) positively correlated with Hb concentrations. Based on either a serum ferritin <30 ng/ml and/or a TSAT< 20%, 241/556 (43.4%) patients were diagnosed as iron deficient. Anemia was present in 64/241 of the iron deficient patients (26.6%). Despite the limitations of the biochemical markers outlined above, we performed ROC analysis assessing the value of RET-He in identifying iron deficiency as defined by serum ferritin <30 ng/mL or transferrin saturation <20%. ROC analysis demonstrates a reasonable performance for RET-He (AUC= 0.733, 95% CI: 0.692, 0.775), with a cut-off value of <30.7 pg yielding 68.2% sensitivity and 69.7% specificity. Using both Hb and RET-He in a multivariable ROC analysis does not provide an improved AUC, as compared to just using RET-He (AUC=0.605 vs.0.733). IV iron administration was associated with significant increases in Hb, MCV, MCH, RET-He, serum ferritin, iron and TSAT, whereas in the no-IV iron cohort, there was a small reduction in RET-He and small increases in MCV and MCH, with no significant variations in Hb and in the other parameters. Serum ferritin was below 30 ng/mL in 18/57 (32%) of the patients requiring IV iron and in 19/183 (10.4%) of those not requiring iron at visit 1. These values changed to 4/57 (7%) (P=0.002) and 23/183 (13%) (P=0.623) at visit 2, respectively. Regression analysis for Hb response following IV iron showed that baseline RET-He values are predictive of Hb response, with every unitary increase in RET-He corresponding to a blunting of the Hb change by -0.19 g/dl (95% CI: -0.27, -0.11; P < 0.001). Changes in RE-He associated with IV iron administration are also predictive of the Hb response, with every additional unit increase in RET-He corresponding to a 0.21 g/dL increase in Hb (95% CI: 0.13, 0.28; P < 0.009). ROC analysis for the capability to predict Hb response among the 57 patients receiving IV iron shows that a value of baseline RET-He < 28.5 pg together with a baseline Hb value < 10.3 g/dL provide the highest Youden's index for predicting Hb response > 1.0 g/dl, with sensitivity of 84% and specificity of 78%. The Figure presents data for the 21/57 patients who had RET-He < 28.5 pg and Hb < 10.3 g/dL vs the 36/57 who did not. The present data show that an abnormally low ret-He value (< 28.5 pg) identifies patients who will respond to iron replacement, obviating delays to obtain standard iron parameters. Baseline and changes in ret-He also associate with Hb response. Given the enormous prevalence of ID in the general population the use of the ret-He, which is available with the CBC on the autoanalyzer, informs need for iron replacement, or lack thereof, represents an increase in convenience for patient and physician, decreases costs, streamlines care and represents an improvement in the treatment paradigm of one of the commonest maladies on the planet. Figure 1 Disclosures Auerbach: AMAG: Research Funding; Sysmex: Research Funding. Brugnara:American Journal of Hematology: Other; Sysmex America Inc.: Consultancy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei-Cheng Yao ◽  
Hsuan-Ju Chen ◽  
Kam-Hang Leong ◽  
Kai-Lan Chang ◽  
Yu-Ting Tina Wang ◽  
...  

2017 ◽  
Vol 468 ◽  
pp. 25-31 ◽  
Author(s):  
Eileen Moritz ◽  
Danilo Wegner ◽  
Stefan Groß ◽  
Martin Bahls ◽  
Marcus Dörr ◽  
...  

2008 ◽  
Vol 11 (7) ◽  
pp. 737-746 ◽  
Author(s):  
Halimatou Alaofè ◽  
John Zee ◽  
Romain Dossa ◽  
Huguette Turgeon O’Brien

AbstractIron deficiency (ID) is the most prevalent micronutrient deficiency in the world, particularly in developing countries. Blood samples and a qualitative FFQ on Fe- and vitamin C-rich foods were obtained in 180 adolescent girls aged 12 to 17 years living in two boarding schools from south Benin. ID, defined as serum ferritin either <20μg/l or 20–50μg/l, plus two of the following parameters: serum Fe<11μmol/l, total iron-binding capacity>73μmol/l or transferrin saturation<20%, was found in 32% of subjects. Anaemia (Hb<120g/l) was found in 51% of adolescents, while 24% suffered from iron-deficiency anaemia (IDA) (ID and Hb<20g/l). After adjusting for confounding factors (age, mother's and father's occupation, household size) in a logistic regression equation, subjects having a low meat consumption (beef, mutton, pork) (<4 times/week) were more than twice as likely to suffer from ID (OR=2·43; 95% CI 1·72, 3·35;P=0·04). Adolescents consuming less fruits (<4 times/week) also had a higher likelihood of suffering from ID (OR=1·53; 95% CI 1·31, 2·80;P=0·03). Finally, subjects whose meat consumption was low were twice as likely to suffer from IDA (OR=2·24; 95% CI 1·01, 4·96;P=0·04). The prevalence of ID represents an important health problem in these Beninese adolescent girls. A higher consumption of Fe-rich foods and of promoters of Fe absorption (meat factor and vitamin C) is recommended to prevent ID deficiency in these subjects.


2021 ◽  
pp. 1-8
Author(s):  
Kriti Puri ◽  
Joseph A. Spinner ◽  
Jacquelyn M. Powers ◽  
Susan W. Denfield ◽  
Hari P. Tunuguntla ◽  
...  

Abstract Introduction: Iron deficiency is associated with worse outcomes in children and adults with systolic heart failure. While oral iron replacement has been shown to be ineffective in adults with heart failure, its efficacy in children with heart failure is unknown. We hypothesised that oral iron would be ineffective in replenishing iron stores in ≥50% of children with heart failure. Methods: We performed a single-centre retrospective cohort study of patients aged ≤21 years with systolic heart failure and iron deficiency who received oral iron between 01/2013 and 04/2019. Iron deficiency was defined as ≥2 of the following: serum iron <50 mcg/dL, serum ferritin <20 ng/mL, transferrin >300 ng/mL, transferrin saturation <15%. Iron studies and haematologic indices pre- and post-iron therapy were compared using paired-samples Wilcoxon test. Results: Fifty-one children with systolic heart failure and iron deficiency (median age 11 years, 49% female) met inclusion criteria. Heart failure aetiologies included cardiomyopathy (51%), congenital heart disease (37%), and history of heart transplantation with graft dysfunction (12%). Median dose of oral iron therapy was 2.9 mg/kg/day of elemental iron, prescribed for a median duration of 96 days. Follow-up iron testing was available for 20 patients, of whom 55% (11/20) remained iron deficient despite oral iron therapy. Conclusions: This is the first report on the efficacy of oral iron therapy in children with heart failure. Over half of the children with heart failure did not respond to oral iron and remained iron deficient.


Author(s):  
Shuo Wang ◽  
Min Zhao ◽  
Zihan Su ◽  
Runqing Mu

Abstract Objectives A large number of people undergo annual health checkup but accurate laboratory criterion for evaluating their health status is limited. The present study determined annual biological variation (BV) and derived parameters of common laboratory analytes in order to accurately evaluate the test results of the annual healthcare population. Methods A total of 43 healthy individuals who had regular healthcare once a year for six consecutive years, were enrolled using physical, electrocardiogram, ultrasonography and laboratory. The annual BV data and derived parameters, such as reference change value (RCV) and index of individuality (II) were calculated and compared with weekly data. We used annual BV and homeostatic set point to calculate personalized reference intervals (RIper) which were compared with population-based reference intervals (RIpop). Results We have established the annual within-subject BV (CVI), RCV, II, RIper of 24 commonly used clinical chemistry and hematology analytes for healthy individuals. Among the 18 comparable measurands, CVI estimates of annual data for 11 measurands were significantly higher than the weekly data. Approximately 50% measurands of II were <0.6, the utility of their RIpop were limited. The distribution range of RIper for most measurands only copied small part of RIpop with reference range index for 8 measurands <0.5. Conclusions Compared with weekly BV, for annual healthcare individuals, annual BV and related parameters can provide more accurate evaluation of laboratory results. RIper based on long-term BV data is very valuable for “personalized” diagnosis on annual health assessments.


2010 ◽  
Vol 41 (4) ◽  
Author(s):  
K.A Koram ◽  
M.M Addae ◽  
J.C Ocran ◽  
S Adu-amankwah ◽  
W.O Rogers ◽  
...  

2002 ◽  
Vol 282 (4) ◽  
pp. G598-G607 ◽  
Author(s):  
Andreas Rolfs ◽  
Herbert L. Bonkovsky ◽  
James G. Kohlroser ◽  
Kristina McNeal ◽  
Ashish Sharma ◽  
...  

Hereditary hemochromatosis (HHC) is one of the most frequent genetic disorders in humans. In healthy individuals, absorption of iron in the intestine is tightly regulated by cells with the highest iron demand, in particular erythroid precursors. Cloning of intestinal iron transporter proteins provided new insight into mechanisms and regulation of intestinal iron absorption. The aim of this study was to assess whether, in humans, the two transporters are regulated in an iron-dependent manner and whether this regulation is disturbed in HHC. Using quantitative PCR, we measured mRNA expression of divalent cation transporter 1 (DCT1), iron-regulated gene 1 (IREG1), and hephaestin in duodenal biopsy samples of individuals with normal iron levels, iron-deficiency anemia, or iron overload. In controls, we found inverse relationships between the DCT1 splice form containing an iron-responsive element (IRE) and blood hemoglobin, serum transferrin saturation, or ferritin. Subjects with iron-deficiency anemia showed a significant increase in expression of the spliced form, DCT1(IRE) mRNA. Similarly, in subjects homozygous for the C282Y HFE mutation, DCT1(IRE) expression levels remained high despite high serum iron saturation. Furthermore, a significantly increased IREG1 expression was observed. Hephaestin did not exhibit a similar iron-dependent regulation. Our data show that expression levels of human DCT1 mRNA, and to a lesser extent IREG1 mRNA, are regulated in an iron-dependent manner, whereas mRNA of hephaestin is not affected. The lack of appropriate downregulation of apical and basolateral iron transporters in duodenum likely leads to excessive iron absorption in persons with HHC.


Author(s):  
Bassel Matli ◽  
Andreas Schulz ◽  
Thomas Koeck ◽  
Tanja Falter ◽  
Johannes Lotz ◽  
...  

Abstract Objectives Insulin resistance (IR) is a hallmark of type 2 diabetes mellitus (DM). The homeostatic model assessment of insulin resistance (HOMA-IR) provides an estimate for IR from fasting glucose and insulin serum concentrations. The aim of this study was to obtain a reference interval for HOMA-IR for a specific insulin immunoassay. Methods The Gutenberg Health Study (GHS) is a population-based, prospective, single-center cohort study in Germany with 15,030 participants aged 35–74 years. Fasting glucose, insulin, and C-peptide were available in 10,340 participants. HOMA-IR was calculated in this group and three reference subgroups with increasingly more stringent inclusion criteria. Age- and sex-dependent distributions of HOMA-IR and reference intervals were obtained. In a substudy three insulin assays were compared and HOMA-IR estimated for each assay. Results Among the 10,340 participants analyzed there were 6,590 non-diabetic, 2,901 prediabetic, and 849 diabetic individuals. Median (interquartile range [IQR]) HOMA-IR was 1.54 (1.13/2.19), 2.00 (1.39/2.99), and 4.00 (2.52/6.51), respectively. The most stringently selected reference group consisted of 1,065 persons. Median (IQR) HOMA-IR was 1.09 (0.85/1.42) with no significant difference between men and women. The 97.5th percentile was 2.35. There was a non-significant trend towards higher values with older age. Comparison of three immunoassays for insulin showed an unsatisfactory correlation among the assays and systematic differences in calculated HOMA-IR. Conclusions We present HOMA-IR reference intervals for adults derived by more or less stringent selection criteria for the reference cohort. In addition we show that assay specific reference intervals for HOMA-IR are required.


Sign in / Sign up

Export Citation Format

Share Document