A New Photoelectric Device for the Measurement of Yarn Diameter and Yarn Evenness

1998 ◽  
Vol 89 (4) ◽  
pp. 711-712
Author(s):  
A. Barella ◽  
A.M. Manich
Nano Energy ◽  
2021 ◽  
Vol 83 ◽  
pp. 105815
Author(s):  
Jia-Lin Meng ◽  
Tian-Yu Wang ◽  
Lin Chen ◽  
Qing-Qing Sun ◽  
Hao Zhu ◽  
...  

2019 ◽  
Vol 3 (2) ◽  
pp. 35 ◽  
Author(s):  
Miguel Reis Silva ◽  
António M. Pereira ◽  
Nuno Alves ◽  
Gonçalo Mateus ◽  
Artur Mateus ◽  
...  

This work presents an innovative system that allows the oriented deposition of continuous fibers or long fibers, pre-impregnated or not, in a thermoplastic matrix. This system is used in an integrated way with the filamentary fusion additive manufacturing technology and allows a localized and oriented reinforcement of polymer components for advanced engineering applications at a low cost. To demonstrate the capabilities of the developed system, composite components of thermoplastic matrix (polyamide) reinforced with pre-impregnated long carbon fiber (carbon + polyamide), 1 K and 3 K, were processed and their tensile and flexural strength evaluated. It was demonstrated that the tensile strength value depends on the density of carbon fibers present in the composite, and that with the passage of 2 to 4 layers of fibers, an increase in breaking strength was obtained of about 366% and 325% for the 3 K and 1 K yarns, respectively. The increase of the fiber yarn diameter leads to higher values of tensile strength of the composite. The obtained standard deviation reveals that the deposition process gives rise to components with anisotropic mechanical properties and the need to optimize the processing parameters, especially those that lead to an increase in adhesion between deposited layers.


2017 ◽  
Vol 88 (24) ◽  
pp. 2810-2824 ◽  
Author(s):  
Ning Jiang ◽  
Hong Hu

Textile structures with negative Poisson’s ratio (PR) behavior are called auxetic textile structures. They have received increasing attention in recent years and have been designed and fabricated through spinning, knitting, weaving and non-woven methods. However, auxetic textile structures fabricated using braiding method have not been reported so far. This paper reported a novel type of auxetic braided structure based on a helical structural arrangement. The geometry of the structure and its deformation mechanism were first introduced and described. Then a special manufacturing process was developed by the modification of commonly used tubular braiding technology. Various auxetic braids were fabricated with different structural parameters and yarns and tested under uniaxial extension conditions. The results showed that all manufactured braids exhibited high negative PR behavior and maintained this behavior until the fracture of the component wrap yarn. Among three structural parameters discussed, namely wrap angle, braiding angle and braiding yarn diameter, the wrap angle had more effects on the tensile properties of auxetic braided structure than the other two parameters. The success of fabricating auxetic braids with commercially available yarns in this study provides an alternative way to manufacture auxetics from positive PR materials.


2016 ◽  
Vol 680 ◽  
pp. 124-128 ◽  
Author(s):  
Chao Du ◽  
Yu Chun Zou ◽  
Zhi Qing Chen ◽  
Wen Kui Li ◽  
Shan Shan Luo

ZnO thin films have attractive applications in photoelectric device, due to their excellent chemical, electrical and optical properties. In this paper, ZnO thin films with good c-axis preferred orientation and high transmittance are prepared on glass sheets by sol-gel immerse technique. The effects of withdrawal speeds on the growth process of thin film crystal, film crystal orientation and the crystallinity, the optical performance were investigated by XRD, SEM and UV-Vis spectrophotometry. The results show that the thin films were composed of better hexagonal wurtzite crystals with the c-axis prepared orientation. The transmittance of prepared thin films is over 80% in the visible-near IR region from 600 nm - 800 nm. ZnO films have sharp and narrow diffraction peaks, which indicates that the materials exhibit high crystallinity. With the withdrawal speeds increasing, the grain size of ZnO thin films and the intensity for all diffraction peaks were increased gradually. The growth model is changed from the stratified structure into the island structure in the growth process. The transmittance of the thin films decrease in the visible wavelength region, with the withdrawal speeds increasing.


2022 ◽  
Author(s):  
BELETE BAYE Gelaw ◽  
Tamrat Tesfaye ◽  
Esubalew Kasaew

Abstract Decreasing waste materials through recycle has in the recent contributed to sustainable manufacturing in many textile industries for better resource utilization in textile mills. This has been given first priority in manufacturing, processing and finishing operations. Most of the time the yarn manufacturing and proper utilization of this material didn’t give attention in most companies. Especially yarn length variation of packages, weaving beams and copes have very critical impact on those companies which manufacture and utilize yarn products. This variation problem has great impact on their productivity and profitability. This paper describes the application of a new formula in the yarn packaging process and it is accomplished by derivation a new formula that can determine the radius of any package. The formula has integrated the basic characteristics of yarn and fiber including yarn diameter, yarn/ fiber density and mass of the yarn coiled on the cop. Finally we have concluded that package radius is the quadratic function of yarn density and package mass on the cope.


Sign in / Sign up

Export Citation Format

Share Document