Flexible textile-based electronic materials assembled with hybrid PEDOT: PSS doped with anionic surfactant

Author(s):  
Wei Zhang ◽  
Jiali Weng ◽  
Yuan Xie ◽  
Xiaoyan Li ◽  
Dechen Ren ◽  
...  
Author(s):  
S.F. Corcoran

Over the past decade secondary ion mass spectrometry (SIMS) has played an increasingly important role in the characterization of electronic materials and devices. The ability of SIMS to provide part per million detection sensitivity for most elements while maintaining excellent depth resolution has made this technique indispensable in the semiconductor industry. Today SIMS is used extensively in the characterization of dopant profiles, thin film analysis, and trace analysis in bulk materials. The SIMS technique also lends itself to 2-D and 3-D imaging via either the use of stigmatic ion optics or small diameter primary beams.By far the most common application of SIMS is the determination of the depth distribution of dopants (B, As, P) intentionally introduced into semiconductor materials via ion implantation or epitaxial growth. Such measurements are critical since the dopant concentration and depth distribution can seriously affect the performance of a semiconductor device. In a typical depth profile analysis, keV ion sputtering is used to remove successive layers the sample.


Author(s):  
K. R. Ovchinnikova

The relevance of the issue under consideration in the article is connected with the confusion in scientific publications of the concepts of “electronic educational materials” and “electronic educational resources”. The article discusses the concept of “electronic educational materials” from the perspective of general systems theory. And their system character is proved. This allows them to be represented as a single complex of structured information of a specific subject area and didactic materials. These didactic materials support the learning process at all stages of its didactic cycle in accordance with the chosen learning technology based on the didactic capabilities of information technologies. It is concluded that the system of high school electronic materials allows to expand the boundaries of the design activity of the teacher, provide management of the student’s thinking activity, to implement a competence approach to the learning process at university


2020 ◽  
Vol 63 (6) ◽  
pp. 289-298
Author(s):  
Yu. M. Poplavko ◽  
Yu. I. Yakymenko
Keyword(s):  

Author(s):  
C. Monachon ◽  
M.S. Zielinski ◽  
D. Gachet ◽  
S. Sonderegger ◽  
S. Muckenhirn ◽  
...  

Abstract Quantitative cathodoluminescence (CL) microscopy is a new optical spectroscopy technique that measures electron beam-induced optical emission over large field of view with a spatial resolution close to that of a scanning electron microscope (SEM). Correlation of surface morphology (SE contrast) with spectrally resolved and highly material composition sensitive CL emission opens a new pathway in non-destructive failure and defect analysis at the nanometer scale. Here we present application of a modern CL microscope in defect and homogeneity metrology, as well as failure analysis in semiconducting electronic materials


Sign in / Sign up

Export Citation Format

Share Document