Applications of SIMS to electronic materials and devices

Author(s):  
S.F. Corcoran

Over the past decade secondary ion mass spectrometry (SIMS) has played an increasingly important role in the characterization of electronic materials and devices. The ability of SIMS to provide part per million detection sensitivity for most elements while maintaining excellent depth resolution has made this technique indispensable in the semiconductor industry. Today SIMS is used extensively in the characterization of dopant profiles, thin film analysis, and trace analysis in bulk materials. The SIMS technique also lends itself to 2-D and 3-D imaging via either the use of stigmatic ion optics or small diameter primary beams.By far the most common application of SIMS is the determination of the depth distribution of dopants (B, As, P) intentionally introduced into semiconductor materials via ion implantation or epitaxial growth. Such measurements are critical since the dopant concentration and depth distribution can seriously affect the performance of a semiconductor device. In a typical depth profile analysis, keV ion sputtering is used to remove successive layers the sample.

2019 ◽  
Vol 34 (5) ◽  
pp. 848-853 ◽  
Author(s):  
Paweł Piotr Michałowski ◽  
Piotr Caban ◽  
Jacek Baranowski

A refined SIMS procedure allows reaching atomic resolution and characterization of each layer in van der Waals structures separately.


1984 ◽  
Vol 38 ◽  
Author(s):  
Joda C. Wormhoudt ◽  
Alan C. Stanton ◽  
Joel A. Silver

AbstractTwo processes of great importance in the semiconductor industry are vapor deposition and plasma etching. This paper presents a review of laser techniques for spectroscopic characterization of the gas phase species involved in these processes. Band strength and other spectroscopic data for selected molecules are used to give estimates of the detection sensitivity in vibrational and electronic bands. Preliminary results are given from work presently in progress in our laboratory on the detection of such species. The discussion includes examples of the application of these techniques to a number of laboratory deposition and etching devices.


1985 ◽  
Vol 65 ◽  
Author(s):  
Richard W. Linton ◽  
Scott R. Bryan ◽  
X. B. Cox ◽  
Dieter P. Griffis

The surface layers on coal fly ash particles are of special environmental interest in that concentration enrichments of trace elements may occur [1], thereby enhancing the potential bioavailability of toxic species. Little research, however, has been devoted to the analytical characterization of intraparticle and interparticle distributions of trace elements. The high detection sensitivity, spatial resolution, and depth profiling capabilities of secondary ion mass spectrometry (SIMS), coupled to digital image acquisition and processing [2], permit three-dimensional (3D) compositional maps for collections of individual micron-sized particles. The 3D analysis of trace element distributions in coal fly ash particles is the subject of this SIMS investigation


2008 ◽  
Vol 16 (6) ◽  
pp. 18-20
Author(s):  
Vincent S. Smentkowski ◽  
Sara G. Ostrowski ◽  
Lauraine Denault ◽  
Charles G. Woychik

Being able to differentiate surface from bulk defects on devices requires the use of complimentary characterization tools. In this article, we show how light microscopy, scanning electron microscopy, energy dispersive X-ray analysis, and time of flight secondary ion mass spectrometry provides complimentary information about the surface and sub-surface composition, topography, and microstructure of a semiconductor device.To create a gamma-ray spectroscopy detector, electrical contacts consisting of a blanket coated cathode and a pixilated anode can be deposited directly on opposite faces of a cadmium zinc telluride (CZT) crystal. The contact metallization must adhere to the surfaces, and the streets between adjacent anode pads must be free of residual metal and contaminants to avoid excessive interpixel leakage currents. The analysis reported below was used to validate the structure and composition of the contact metal stack and to characterize the streets of the anode pad array.


2010 ◽  
Vol 645-648 ◽  
pp. 701-704
Author(s):  
Margareta K. Linnarsson ◽  
Aurégane Audren ◽  
Anders Hallén

Manganese diffusion in 4H-SiC for possible spintronic applications is investigated. Ion implantation is used to introduce manganese in n-type and p-type 4H-SiC and subsequent heat treatment is performed in the temperature range of 1400 to 1800 °C. The depth distribution of manganese is recorded by secondary ion mass spectrometry and Rutherford backscattering spectrometry in the channeling direction is employed for characterization of crystal disorder. After the heat treatment, the crystal order is improved and a substantial rearrangement of manganese is revealed in the implanted region. However, no pronounced manganese diffusion deeper into the sample is recorded.


2005 ◽  
Vol 128 (3) ◽  
pp. 691-696 ◽  
Author(s):  
K. Malukhin ◽  
K. Ehmann

Shape memory alloys (SMAs) are used in a wide variety of applications including medical stents, couplings, actuators, jointless monolithic structures for actuation and manipulation, etc. Due to the SMA’s poor machinability it is advantageous to use rapid prototyping (RP) techniques for the manufacturing of SMA structures. However, the influence of the RP process on the properties of the SMA is not fully explored yet. A laser based direct metal deposition (DMD) RP process was used in this work to manufacture NiTi SMA samples and to investigate their physical properties using optical microscopy, differential scanning calorimetry (DSC), chemical analysis with secondary ion mass spectrometry (SIMS), and energy dispersive x-ray spectrometry (EDS) with a scanning electron microscope (SEM). DSC analysis has shown that the thermally treated parts possess smooth and pronounced reversible martensite-austenite transformation peaks that are the prerequisite for the shape memory effect (SME) in SMAs. DSC has also shown that quenching affects the peaks. The density of the produced parts was close to the theoretical density of the material as determined by porosity measurements. Finally, SIMS depth profile analysis has shown very low amounts of contamination in the material manufactured by DMD. The major conclusion is that the DMD RP process can be used to manufacture high-quality SMA structures from SMA powders.


Author(s):  
Mark Denker ◽  
Jennifer Wall ◽  
Mark Ray ◽  
Richard Linton

Reactive ion beams such as O2+ and Cs+ are used in Secondary Ion Mass Spectrometry (SIMS) to analyze solids for trace impurities. Primary beam properties such as energy, dose, and incidence angle can be systematically varied to optimize depth resolution versus sensitivity tradeoffs for a given SIMS depth profiling application. However, it is generally observed that the sputtering process causes surface roughening, typically represented by nanometer-sized features such as cones, pits, pyramids, and ripples. A roughened surface will degrade the depth resolution of the SIMS data. The purpose of this study is to examine the relationship of the roughness of the surface to the primary ion beam energy, dose, and incidence angle. AFM offers the ability to quantitatively probe this surface roughness. For the initial investigations, the sample chosen was <100> silicon, and the ion beam was O2+.Work to date by other researchers typically employed Scanning Tunneling Microscopy (STM) to probe the surface topography.


Author(s):  
R. Packwood ◽  
M.W. Phaneuf ◽  
V. Weatherall ◽  
I. Bassignana

The development of specialized analytical instruments such as the SIMS, XPS, ISS etc., all with truly incredible abilities in certain areas, has given rise to the notion that electron probe microanalysis (EPMA) is an old fashioned and rather inadequate technique, and one that is of little or no use in such high technology fields as the semiconductor industry. Whilst it is true that the microprobe does not possess parts-per-billion sensitivity (ppb) or monolayer depth resolution it is also true that many times these extremes of performance are not essential and that a few tens of parts-per-million (ppm) and a few tens of nanometers depth resolution is all that is required. In fact, the microprobe may well be the second choice method for a wide range of analytical problems and even the method of choice for a few.The literature is replete with remarks that suggest the writer is confusing an SEM-EDXS combination with an instrument such as the Cameca SX-50. Even where this confusion does not exist, the literature discusses microprobe detection limits that are seldom stated to be as low as 100 ppm, whereas there are numerous element combinations for which 10-20 ppm is routinely attainable.


Author(s):  
P.-F. Staub ◽  
C. Bonnelle ◽  
F. Vergand ◽  
P. Jonnard

Characterizing dimensionally and chemically nanometric structures such as surface segregation or interface phases can be performed efficiently using electron probe (EP) techniques at very low excitation conditions, i.e. using small incident energies (0.5<E0<5 keV) and low incident overvoltages (1<U0<1.7). In such extreme conditions, classical analytical EP models are generally pushed to their validity limits in terms of accuracy and physical consistency, and Monte-Carlo simulations are not convenient solutions as routine tools, because of their cost in computing time. In this context, we have developed an intermediate procedure, called IntriX, in which the ionization depth distributions Φ(ρz) are numerically reconstructed by integration of basic macroscopic physical parameters describing the electron beam/matter interaction, all of them being available under pre-established analytical forms. IntriX’s procedure consists in dividing the ionization depth distribution into three separate contributions:


2018 ◽  
Author(s):  
Dinesh Mishra ◽  
Sisi Wang ◽  
Zhicheng Jin ◽  
Eric Lochner ◽  
Hedi Mattoussi

<p>We describe the growth and characterization of highly fluorescing, near-infrared-emitting nanoclusters made of bimetallic Au<sub>25-x</sub>Ag<sub>x</sub> cores, prepared using various monothiol-appended hydrophobic and hydrophilic ligands. The reaction uses well-defined triphenylphosphine-protected Au<sub>11</sub> clusters (as precursors), which are reacted with Ag(I)-thiolate complexes. The prepared nanoclusters are small (diameter < 2nm, as characterized by TEM) with emission peak at 760 nm and long lifetime (~12 µs). The quantum yield measured for these materials was 0.3 - 0.4 depending on the ligand. XPS measurements show the presence of both metal atoms in the core, with measured binding energies that agree with reported values for nanocluster materials. The NIR emission combined with high quantum yield, small size and ease of surface functionalization afforded by the coating, make these materials suitable to implement investigations that address fundamental questions and potentially useful for biological sensing and imaging applications.<br></p>


Sign in / Sign up

Export Citation Format

Share Document