Simple Experiments in Atmospheric Physics: Light Bulb Climatology

Weatherwise ◽  
1988 ◽  
Vol 41 (5) ◽  
pp. 291-296 ◽  
Author(s):  
Craig Bohren
2011 ◽  
Vol 19 (4) ◽  
pp. 341
Author(s):  
Joel Díaz Reyes ◽  
Aarón Pérez-Benítez ◽  
Valentín Dorantes

<span>Tungsten(VI) oxide can be easily synthesized starting from a standard light bulb. The reaction consists in the oxidation at high temperatures (T ≈ 2000 – 3000° C) of a tungsten filament in presence of air; conditions which can be easily achieved by connecting a broken light bulb (but with its intact filament) to an AC-power supply of 110 volts. The vapor of WO3 is condensed into a beaker in a quantity enough to be characterized by infrared spectroscopy. The experiment is very funny, inexpensive and allows to the teacher to link several topics in current chemistry and physics of the tungsten oxides, such as their nomenclature and technological applications (i.e. electrochromic devices, gasochromic sensors, superalloys or as it is used in home: As a “simple” emisor of light!).</span>


2021 ◽  
pp. bmjinnov-2020-000574
Author(s):  
Richard J Holden ◽  
Malaz A Boustani ◽  
Jose Azar

Innovation is essential to transform healthcare delivery systems, but in complex adaptive systems innovation is more than ‘light bulb events’ of inspired creativity. To achieve true innovation, organisations must adopt a disciplined, customer-centred process. We developed the process of Agile Innovation as an approach any complex adaptive organisation can adopt to achieve rapid, systematic, customer-centred development and testing of innovative interventions. Agile Innovation incorporates insights from design thinking, Agile project management, and complexity and behavioural sciences. It was refined through experiments in diverse healthcare organisations. The eight steps of Agile Innovation are: (1) confirm demand; (2) study the problem; (3) scan for solutions; (4) plan for evaluation and termination; (5) ideate and select; (6) run innovation development sprints; (7) validate solutions; and (8) package for launch. In addition to describing each of these steps, we discuss examples of and challenges to using Agile Innovation. We contend that once Agile Innovation is mastered, healthcare delivery organisations can habituate it as the go-to approach to projects, thus incorporating innovation into how things are done, rather than treating innovation as a light bulb event.


2018 ◽  
Author(s):  
Ying Wei ◽  
Xueshun Chen ◽  
Huansheng Chen ◽  
Jie Li ◽  
Zifa Wang ◽  
...  

Abstract. In this study, a full description and comprehensive evaluation of a global-regional nested model, the Aerosol and Atmospheric Chemistry Model of the Institute of Atmospheric Physics (IAP-AACM), is presented for the first time. Not only the global budgets and distribution, but also a comparison of nested simulation over China against multi-datasets are investigated, benefiting from the access of air quality monitoring data in China since 2013 and the Model Inter-Comparison Study for Asia project. The model results and analysis can greatly help reduce uncertainties and understand model diversity in assessing global and regional aerosol effects, especially over East Asia and areas affected by East Asia. The 1-year simulation for 2014 shows that the IAP-AACM is within the range of other models, and well reproduces both spatial distribution and seasonal variation of trace gases and aerosols over major continents and oceans (mostly within the factor of two). The model nicely captures spatial variation for carbon monoxide except an underestimation over the ocean that also shown in other models, which suggests the need for more accurate emission rate of ocean source. For aerosols, the simulation of fine-mode particulate matter (PM2.5) matches observation well and it has a better simulating ability on primary aerosols than secondary aerosols. This calls for more investigation on aerosol chemistry. Furthermore, IAP-AACM shows the superiority of global model, compared with regional model, on performing regional transportation for the nested simulation over East Asia. For the city evaluation over China, the model reproduces variation of sulfur dioxide (SO2), nitrogen dioxide (NO2) and PM2.5 accurately in most cities, with correlation coefficients above 0.5. Compared to the global simulation, the nested simulation exhibits an improved ability to capture the high temporal and spatial variability over China. In particular, the correlation coefficients for PM2.5, SO2 and NO2 are raised by ~ 0.25, ~ 0.15 and ~ 0.2 respectively in the nested grid. The summary provides constructive information for the application of chemical transport models. In future, we recommend the model's ability to capture high spatial variation of PM2.5 is yet to be improved.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 430
Author(s):  
Oleg A. Romanovskii ◽  
Gennadii G. Matvienko

The Atmosphere Special Issue entitled “Atmospheric and Ocean Optics: Atmospheric Physics II” comprises eight original papers [...]


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Dmytro Vasylyev

AbstractA new analytical approximation for the Chapman mapping integral, $${\text {Ch}}$$ Ch , for exponential atmospheres is proposed. This formulation is based on the derived relation of the Chapman function to several classes of the incomplete Bessel functions. Application of the uniform asymptotic expansion to the incomplete Bessel functions allowed us to establish the precise analytical approximation to $${\text {Ch}}$$ Ch , which outperforms established analytical results. In this way the resource consuming numerical integration can be replaced by the derived approximation with higher accuracy. The obtained results are useful for various branches of atmospheric physics such as the calculations of optical depths in exponential atmospheres at large grazing angles, physical and chemical aeronomy, atmospheric optics, ionospheric modeling, and radiative transfer theory.


1988 ◽  
Vol 56 (9) ◽  
pp. 863-864
Author(s):  
Craig F. Bohren ◽  
Hans C. von Baeyer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document