A channelling study of helium-ion irradiation damage in niobium II. Effect of irradiation temperature

1979 ◽  
Vol 39 (3) ◽  
pp. 379-387 ◽  
Author(s):  
R. E. Kaim ◽  
D. W. Palmer
2020 ◽  
Vol 504 ◽  
pp. 144383 ◽  
Author(s):  
Shasha Zhang ◽  
Zhengjun Yao ◽  
Zhaokuan Zhang ◽  
Moliar Oleksandr

2020 ◽  
Vol 159 ◽  
pp. 111857
Author(s):  
Hong-Yu Chen ◽  
Yu-Fen Zhou ◽  
Meng-Yao Xu ◽  
Lai-Ma Luo ◽  
Qiu Xu ◽  
...  

Materialia ◽  
2019 ◽  
Vol 6 ◽  
pp. 100268 ◽  
Author(s):  
Gang Yao ◽  
Lai-Ma Luo ◽  
Xiao-Yue Tan ◽  
Xiang Zan ◽  
Qiu Xu ◽  
...  

2018 ◽  
Vol 509 ◽  
pp. 198-203 ◽  
Author(s):  
Meng–Yao Xu ◽  
Lai–Ma Luo ◽  
Yue Xu ◽  
Xiang Zan ◽  
Qiu Xu ◽  
...  

2011 ◽  
Vol 1298 ◽  
Author(s):  
Bipasha Bose ◽  
Robert J. Klassen

ABSTRACTWe present here new information on the effect of irradiation temperature on the strength and mechanical anisotropy of Zr-2.5%Nb CANDU pressure tube material. Polished samples aligned normal to the transverse (TN), axial (AN) and radial (RN) directions of the pressure tube were irradiated at 300°C with 8.5 MeV Zr+ ions to assess the effect of concurrent thermal annealing of the irradiation damage. Constant-load micro-indentation creep tests were performed at 25°C at indentation depths from 0.1 to 2.0 μm on the ion irradiated samples.The increase in the initial indentation stress with increasing levels of Zr+ ion irradiation at 300°C was lower than that reported earlier for similar samples exposed to Zr+ irradiation at 25°C. While the anisotropy of the indentation stress decreased significantly with Zr+ ion irradiation, the level of the decrease was reduced when the irradiation was performed at 300oC compared to 25oC. The apparent activation energy ΔG0 of the obstacles that limit the rate of dislocation glide during indentation creep did not change with indentation direction but did increase with increasing levels of Zr+ ion damage. The values of ΔG0 were, again, lower for samples that were irradiated at 300°C than for those irradiated at 25oC.The observed differences in the magnitude of, and the anisotropy of, the initial indentation stress and also the decrease in the apparent activation energy of the indentation creep process of Zr-2.5%Nb samples irradiated with Zr+ ions at 300oC compared to those irradiated at 25oC indicate the effect that concurrent thermal annealing has on the accumulation of irradiation damage. The effect of irradiation temperature on reducing the degree of, and the strength of, irradiation induced crystallographic damage must therefore be considered when predicting the strength and thermal creep behaviour of irradiated nuclear materials.


2020 ◽  
Vol 121 ◽  
pp. 103241 ◽  
Author(s):  
Gang Yao ◽  
Xiao-Yue Tan ◽  
Lai-Ma Luo ◽  
Xiang Zan ◽  
Yue Xu ◽  
...  

2012 ◽  
Vol 18 (S2) ◽  
pp. 816-817
Author(s):  
S. Vaithaiyalingam ◽  
A. Devaraj ◽  
V. Venkata Rama Shesha R ◽  
C. Wang ◽  
T. Varga ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


2021 ◽  
pp. 111710
Author(s):  
Yuanyuan Chen ◽  
Haixue Hou ◽  
Gang Yao ◽  
Dongguang Liu ◽  
Laima Luo ◽  
...  

2003 ◽  
Vol 777 ◽  
Author(s):  
T. Devolder ◽  
M. Belmeguenai ◽  
C. Chappert ◽  
H. Bernas ◽  
Y. Suzuki

AbstractGlobal Helium ion irradiation can tune the magnetic properties of thin films, notably their magneto-crystalline anisotropy. Helium ion irradiation through nanofabricated masks can been used to produce sub-micron planar magnetic nanostructures of various types. Among these, perpendicularly magnetized dots in a matrix of weaker magnetic anisotropy are of special interest because their quasi-static magnetization reversal is nucleation-free and proceeds by a very specific domain wall injection from the magnetically “soft” matrix, which acts as a domain wall reservoir for the “hard” dot. This guarantees a remarkably weak coercivity dispersion. This new type of irradiation-fabricated magnetic device can also be designed to achieve high magnetic switching speeds, typically below 100 ps at a moderate applied field cost. The speed is obtained through the use of a very high effective magnetic field, and high resulting precession frequencies. During magnetization reversal, the effective field incorporates a significant exchange field, storing energy in the form of a domain wall surrounding a high magnetic anisotropy nanostructure's region of interest. The exchange field accelerates the reversal and lowers the cost in reversal field. Promising applications to magnetic storage are anticipated.


Sign in / Sign up

Export Citation Format

Share Document