Assessment of the Effect of Irradiation Temperature on the Mechanical Anisotropy of the Zr+ Ion Irradiated Zr-2.5%Nb

2011 ◽  
Vol 1298 ◽  
Author(s):  
Bipasha Bose ◽  
Robert J. Klassen

ABSTRACTWe present here new information on the effect of irradiation temperature on the strength and mechanical anisotropy of Zr-2.5%Nb CANDU pressure tube material. Polished samples aligned normal to the transverse (TN), axial (AN) and radial (RN) directions of the pressure tube were irradiated at 300°C with 8.5 MeV Zr+ ions to assess the effect of concurrent thermal annealing of the irradiation damage. Constant-load micro-indentation creep tests were performed at 25°C at indentation depths from 0.1 to 2.0 μm on the ion irradiated samples.The increase in the initial indentation stress with increasing levels of Zr+ ion irradiation at 300°C was lower than that reported earlier for similar samples exposed to Zr+ irradiation at 25°C. While the anisotropy of the indentation stress decreased significantly with Zr+ ion irradiation, the level of the decrease was reduced when the irradiation was performed at 300oC compared to 25oC. The apparent activation energy ΔG0 of the obstacles that limit the rate of dislocation glide during indentation creep did not change with indentation direction but did increase with increasing levels of Zr+ ion damage. The values of ΔG0 were, again, lower for samples that were irradiated at 300°C than for those irradiated at 25oC.The observed differences in the magnitude of, and the anisotropy of, the initial indentation stress and also the decrease in the apparent activation energy of the indentation creep process of Zr-2.5%Nb samples irradiated with Zr+ ions at 300oC compared to those irradiated at 25oC indicate the effect that concurrent thermal annealing has on the accumulation of irradiation damage. The effect of irradiation temperature on reducing the degree of, and the strength of, irradiation induced crystallographic damage must therefore be considered when predicting the strength and thermal creep behaviour of irradiated nuclear materials.

1998 ◽  
Vol 540 ◽  
Author(s):  
M. L. Jenkins ◽  
P. Mavani ◽  
S. Müller ◽  
C. Abromeit

AbstractThe influence of the irradiation temperature Tirr on the development of disordered zones produced at displacement cascades in Ni3A1 by heavy-ion irradiation with 50 keV Ta+ and 300 keV Ni+ ions has been investigated. The normalised number density (yield) of disordered zones for 300 keV Ni+ irradiation showed a sharp fall between Tirr= 373 K and 573 K. For 50 keV Ni+ irradiation there was a similar fall between 573 K and 673 K. The mean diameters of the disordered zones produced by 300 keV Ni+ ions decreased by about 2 nm between room temperature and 573 K, and there was a tendency for larger zones to become more regular in shape. For 50 keV Ta+ ions, a similar trend was observed between 573 K and 873 K. An annealing experiment confirmed that disordered zones produced at lower temperatures were stable up to a temperature of about 673 K, showing that these trends cannot be due to thermal annealing of disordered zones. The experimental results are consistent with an increased tendency for reordering at the peripheries of disordered zones, due to the increased lifetimes of thermal spikes at higher irradiation temperatures.


1988 ◽  
Vol 100 ◽  
Author(s):  
R. G. Elliman ◽  
J. Linnros ◽  
W. L. Brown

ABSTRACTFixed fluence ion irradiation of silicon is shown to produce either defected crystal or amorphous silicon depending on the ion flux employed. The amorphous threshold flux, defined as the minimum flux required to generate a continuous amorphous layer for a fixed fluence irradiation, is measured as a function of irradiation temperature. This critical flux for amorphization is shown to satisfy an Arrhenius expression with a unique activation energy of ∼1.2eV, which corresponds to the migration/dissociation energy of the silicon divacancy. These observations lead to the conclusion that the stability of the silicon divacancy controls the competition between defect production and dynamic defect annealing, and hence the crystalline to amorphous phase transformation.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Guanghao Cheng ◽  
Gurong Shen ◽  
Jun Wang ◽  
Yunhao Wang ◽  
Weibo Zhang ◽  
...  

The present work reports the effects of γ-, θ-phase of alumina on the hydrothermal stability and the properties of non- and strongly-interacting Rh species of the Rh/Al2O3 catalysts. Comparing to γ-Al2O3, θ-Al2O3 can not only reduce the amount of occluded Rh but also better stabilize Rh during hydrothermal aging treatment. When the aging time was prolonged to 70 h, all the non-interacting Rh was transformed into strongly-interacting Rh and occluded Rh. The XPS results indicated that non- and strongly-interacting Rh might exist in the form of Rh/Rh3+ and Rh4+, respectively. CO-NO reaction was chosen as a probe reaction to research more information about non- and strongly-interacting Rh. The two Rh species had similar apparent activation energy (Eapp) of 170 kJ/mol, which indicated that non- and strongly-interacting Rh follow the same reaction path. The non-interacting Rh was removed from aged samples by the acid-treated method, and obtained results showed that only 2.5% and 4.0% non-interacting Rh was maintained in aged Rh/γ-Al2O3 and Rh/θ-Al2O3.


2021 ◽  
Author(s):  
Federico Picollo ◽  
Alfio Battiato ◽  
Federico Bosia ◽  
Fabio Scaffidi Muta ◽  
Paolo Olivero ◽  
...  

Carbon exhibits a remarkable range of structural forms, due to the availability of sp3, sp2 and sp1 chemical bonds. Contrarily to other group IV elements such as silicon and germanium,...


2020 ◽  
Vol 92 (2) ◽  
pp. 20601
Author(s):  
Abdelaziz Labrag ◽  
Mustapha Bghour ◽  
Ahmed Abou El Hassan ◽  
Habiba El Hamidi ◽  
Ahmed Taoufik ◽  
...  

It is reported in this paper on the thermally assisted flux flow in epitaxial YBa2Cu3O7-δ deposited by Laser ablation method on the SrTiO3 substrate. The resistivity measurements ρ (T, B) of the sample under various values of the magnetic field up to 14T in directions B∥ab-plane and B∥c-axis with a dc weak transport current density were investigated in order to determine the activation energy and then understand the vortex dynamic phenomena and therefore deduce the vortex phase diagram of this material. The apparent activation energy U0 (B) calculated using an Arrhenius relation. The measured results of the resistivity were then adjusted to the modified thermally assisted flux flow model in order to account for the temperature-field dependence of the activation energy U (T, B). The obtained values from the thermally assisted activation energy, exhibit a behavior similar to the one showed with the Arrhenius model, albeit larger than the apparent activation energy with ∼1.5 order on magnitude for both cases of the magnetic field directions. The vortex glass model was also used to obtain the vortex-glass transition temperature from the linear fitting of [d ln ρ/dT ] −1 plots. In the course of this work thanks to the resistivity measurements the upper critical magnetic field Hc2 (T), the irreversibility line Hirr (T) and the crossover field HCrossOver (T) were located. These three parameters allowed us to establish a phase diagram of the studied material where limits of each vortex phase are sketched in order to optimize its applicability as a practical high temperature superconductor used for diverse purposes.


2021 ◽  
Vol 10 (1) ◽  
pp. 011-020
Author(s):  
Luyao Kou ◽  
Junjing Tang ◽  
Tu Hu ◽  
Baocheng Zhou ◽  
Li Yang

Abstract Generally, adding a certain amount of an additive to pulverized coal can promote its combustion performance. In this paper, the effect of CaO on the combustion characteristics and kinetic behavior of semi-coke was studied by thermogravimetric (TG) analysis. The results show that adding proper amount of CaO can reduce the ignition temperature of semi-coke and increase the combustion rate of semi-coke; with the increase in CaO content, the combustion rate of semi-coke increases first and then decreases, and the results of TG analysis showed that optimal addition amount of CaO is 2 wt%. The apparent activation energy of CaO with different addition amounts of CaO was calculated by Coats–Redfern integration method. The apparent activation energy of semi-coke in the combustion reaction increases first and then decreases with the increase in CaO addition. The apparent activation energies of different samples at different conversion rates were calculated by Flynn–Wall–Ozawa integral method. It was found that the apparent activation energies of semi-coke during combustion reaction decreased with the increase in conversion.


Sign in / Sign up

Export Citation Format

Share Document