Nuclear magnetic resonance studies on hydrogenated amorphous silicon prepared by very high-frequency glow discharge

1994 ◽  
Vol 69 (2) ◽  
pp. 169-176 ◽  
Author(s):  
K. Peter ◽  
P. C. Taylor ◽  
F. Finger
1996 ◽  
Vol 420 ◽  
Author(s):  
R. E. Norberg ◽  
P. A. Fedders ◽  
D. J. Leopold

AbstractProton and deuteron NMR in hydrogenated amorphous silicon yield quantitative measures of species-specific structural configurations and their dynamics. Populations of silicon-bonded and molecular hydrogens correlate with photovoltaic quality, doping, illumination/dark anneal sequences, and with infrared and other characterizations. High quality films contain substantial populations of nanovoid-trapped molecular hydrogen.


2007 ◽  
Vol 989 ◽  
Author(s):  
Guozhen Yue ◽  
Baojie Yan ◽  
Jeffrey Yang ◽  
Subhendu Guha

AbstractWe report our recent progress on high rate deposition of hydrogenated amorphous silicon (a-Si:H) and silicon germanium (a-SiGe:H) based n-i-p solar cells. The intrinsic a-Si:H and a-SiGe:H layers were deposited using modified very high frequency (MVHF) glow discharge. We found that both the initial cell performance and stability of the MVHF a-Si:H single-junction cells are independent of the deposition rate up to 15 Å/s. The average initial and stable active-area cell efficiencies of 10.0% and 8.5%, respectively, were obtained for the cells on textured Ag/ZnO coated stainless steel substrates. a-SiGe:H single-junction cells were also optimized at a rate of ~10 Å/s. The cell performance is similar to those made using conventional radio frequency technique at 3 Å/s. By combining the optimized component cells made at 10 Å/s, an a-Si:H/a-SiGe:H double-junction solar cell with an initial active-area efficiency of 11.7% was achieved.


Sign in / Sign up

Export Citation Format

Share Document