Steady two dimensional MHD stokes flow between two parallel plates under angular velocity with one plate moving uniformly and the other plate at rest and uniform suction at the stationary plate

Author(s):  
R. Delhi Babu ◽  
S. Ganesh ◽  
M. Anish
1978 ◽  
Vol 86 (4) ◽  
pp. 727-744 ◽  
Author(s):  
N. Liron ◽  
R. Shahar

Velocity and pressure fields for Stokes flow due to a force singularity (Stokeslet) of arbitrary orientation and at arbitrary location inside an infinite circular pipe are obtained. Two alternative expressions for the solution, one in terms of a Fourier-Bessel type expansion, and the other as a doubly infinite series, are given. The latter is especially suitable for computational purposes as it is shown to be an exponentially decaying series. From the series it is found that all velocity components decay exponentially to zero up- or downstream away from the Stokeslet. This is also true for pressure fields of Stokeslets perpendicular to the axis of the pipe. A Stokeslet parallel to the axis of the pipe raises the pressure difference between − ∞ to + ∞ by a finite non-zero amount. Some numerical results for a Stokeslet parallel to the axis are given. Comparison of the results with flow in a two-dimensional channel is also discussed.


1995 ◽  
Vol 301 ◽  
pp. 325-344 ◽  
Author(s):  
Saleh Tanveer ◽  
Giovani L. Vasconcelos

A general class of exact solutions is presented for a time-evolving bubble in a two-dimensional slow viscous flow in the presence of surface tension. These solutions can describe a bubble in a linear shear flow as well as an expanding or contracting bubble in an otherwise quiescent flow. In the case of expanding bubbles, the solutions have a simple behaviour in the sense that for essentially arbitrary initial shapes the bubble its asymptote is expanding circle. Contracting bubbles, on the other hand, can develop narrow structures (‘near-cusps’) on the interface and may undergo ‘breakup’ before all the bubble fluid is completely removed. The mathematical structure underlying the existence of these exact solutions is also investigated.


Author(s):  
J.L. Carrascosa ◽  
G. Abella ◽  
S. Marco ◽  
M. Muyal ◽  
J.M. Carazo

Chaperonins are a class of proteins characterized by their role as morphogenetic factors. They trantsiently interact with the structural components of certain biological aggregates (viruses, enzymes etc), promoting their correct folding, assembly and, eventually transport. The groEL factor from E. coli is a conspicuous member of the chaperonins, as it promotes the assembly and morphogenesis of bacterial oligomers and/viral structures.We have studied groEL-like factors from two different bacteria:E. coli and B.subtilis. These factors share common morphological features , showing two different views: one is 6-fold, while the other shows 7 morphological units. There is also a correlation between the presence of a dominant 6-fold view and the fact of both bacteria been grown at low temperature (32°C), while the 7-fold is the main view at higher temperatures (42°C). As the two-dimensional projections of groEL were difficult to interprete, we studied their three-dimensional reconstruction by the random conical tilt series method from negatively stained particles.


2004 ◽  
Vol 31 (4) ◽  
pp. 344-357
Author(s):  
T. A. Dunaeva ◽  
A. A. Gourjii ◽  
V. V. Meleshko

2020 ◽  
Vol 20 (11) ◽  
pp. 1340-1351 ◽  
Author(s):  
Ponnurengam M. Sivakumar ◽  
Matin Islami ◽  
Ali Zarrabi ◽  
Arezoo Khosravi ◽  
Shohreh Peimanfard

Background and objective: Graphene-based nanomaterials have received increasing attention due to their unique physical-chemical properties including two-dimensional planar structure, large surface area, chemical and mechanical stability, superconductivity and good biocompatibility. On the other hand, graphene-based nanomaterials have been explored as theranostics agents, the combination of therapeutics and diagnostics. In recent years, grafting hydrophilic polymer moieties have been introduced as an efficient approach to improve the properties of graphene-based nanomaterials and obtain new nanoassemblies for cancer therapy. Methods and results: This review would illustrate biodistribution, cellular uptake and toxicity of polymergraphene nanoassemblies and summarize part of successes achieved in cancer treatment using such nanoassemblies. Conclusion: The observations showed successful targeting functionality of the polymer-GO conjugations and demonstrated a reduction of the side effects of anti-cancer drugs for normal tissues.


Author(s):  
Olivier Ozenda ◽  
Epifanio G. Virga

AbstractThe Kirchhoff-Love hypothesis expresses a kinematic constraint that is assumed to be valid for the deformations of a three-dimensional body when one of its dimensions is much smaller than the other two, as is the case for plates. This hypothesis has a long history checkered with the vicissitudes of life: even its paternity has been questioned, and recent rigorous dimension-reduction tools (based on standard $\varGamma $ Γ -convergence) have proven to be incompatible with it. We find that an appropriately revised version of the Kirchhoff-Love hypothesis is a valuable means to derive a two-dimensional variational model for elastic plates from a three-dimensional nonlinear free-energy functional. The bending energies thus obtained for a number of materials also show to contain measures of stretching of the plate’s mid surface (alongside the expected measures of bending). The incompatibility with standard $\varGamma $ Γ -convergence also appears to be removed in the cases where contact with that method and ours can be made.


2021 ◽  
Vol 11 (12) ◽  
pp. 5398
Author(s):  
Tomáš Kot ◽  
Zdenko Bobovský ◽  
Aleš Vysocký ◽  
Václav Krys ◽  
Jakub Šafařík ◽  
...  

We describe a method for robotic cell optimization by changing the placement of the robot manipulator within the cell in applications with a fixed end-point trajectory. The goal is to reduce the overall robot joint wear and to prevent uneven joint wear when one or several joints are stressed more than the other joints. Joint wear is approximated by calculating the integral of the mechanical work of each joint during the whole trajectory, which depends on the joint angular velocity and torque. The method relies on using a dynamic simulation for the evaluation of the torques and velocities in robot joints for individual robot positions. Verification of the method was performed using CoppeliaSim and a laboratory robotic cell with the collaborative robot UR3. The results confirmed that, with proper robot base placement, the overall wear of the joints of a robotic arm could be reduced from 22% to 53% depending on the trajectory.


Sign in / Sign up

Export Citation Format

Share Document