Effects of Hall current on MHD natural convection in between two vertical flat walls with induced magnetic field and heat source/sink

Author(s):  
Dileep Kumar ◽  
A. K. Singh ◽  
Krishnendu Bhattacharyya ◽  
Astick Banerjee
Author(s):  
Basant K. Jha ◽  
Peter B. Malgwi

AbstractThis study examines the impact of induced magnetic field and Hall current on steady fully developed hydromagnetic natural convection flow in a micro-channel under the action of an inclined magnetic field. The mathematical model responsible for the present physical situation is presented in a dimensionless form under relevant boundary conditions. The governing coupled equations are solved exactly. A parametric study of some physical parameters is conducted and a representative set of numerical results for the velocity field, the induced magnetic field, induced current density, volume flow rate, and skin friction on the micro-channel surfaces are illustrated graphically. It is observed that magnetic field inclination plays an important role in flow formation inside the micro-channel. Numerical computation reveals that the increase in inclination angle reduces the hydromagnetic drag leading to enhancement in primary fluid velocity, while the impact is just converse on the secondary fluid velocity. Furthermore, the increase in Hall current parameter increases the magnitude of the fluid velocity in both primary and secondary flow directions.


2018 ◽  
Vol 387 ◽  
pp. 428-441
Author(s):  
P.R. Athira ◽  
B. Mahanthesh ◽  
Bijjanal Jayanna Gireesha ◽  
Oluwole Daniel Makinde

An investigation is carried out to observe the impacts of non-linear convection and induced magnetic field in the flow of viscous fluid over a porous plate under the influence of chemical reaction and heat source/sink. The plate is subjected to a regular free stream velocity as well as a suction velocity. The subjected non-linear problem is non-dimensionalized and analytic solutions are presented via perturbation method. The graphs are plotted to analyze the effect of relevant parameters on velocity, induced magnetic field, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is established that nonlinear convection aspect is destructive for thermal field and its layer thickness. The magnetic field effect enhances the thermal field while it reduces the velocity field. Also, the nonlinear effect subsides heat transfer rate significantly.


Sign in / Sign up

Export Citation Format

Share Document