Effects of aligned magnetic field on heat transfer of water-based carbon nanotubes nanofluid over a stretching sheet with homogeneous-heterogeneous reactions

Author(s):  
Dulal Pal ◽  
Gopinath Mandal
Author(s):  
C. Ragavan ◽  
Muniradhnam ◽  
A.K. Abdul Hakeem ◽  
Manoj K. Nayak ◽  
Oluwole Daniel Makinde

This article deals with the heat transfer in a Walter’s liquid B fluid through a stretching sheet subject to elastic deformation. We have incorporated the combined effects of aligned magnetic field and viscous dissipation. The effect of viscous dissipation regulating the heat transfer is considered. In addition, prescribed power law surface temperature and prescribed power law surface heat flux boundary conditions are introduced. The transformed non-linear coupled governing equations are solved analytically using hyper geometric function. The effects of various embedded pertinent parameters on velocity and temperature profiles are well discussed with the aid of appropriate graphs and tables. Our results are verified with previously published results of some noteworthy researchers. It is found that the augmenting aligned magnetic field strength reduces the flow velocity and the related momentum boundary layer thickness.


AppliedMath ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 37-62
Author(s):  
Anik Gomes ◽  
Jahangir Alam ◽  
Ghulam Murtaza ◽  
Tahmina Sultana ◽  
Efstratios E. Tzirtzilakis ◽  
...  

The aim of the present study is to analyze the effects of aligned magnetic field and radiation on biomagnetic fluid flow and heat transfer over an unsteady stretching sheet with various slip conditions. The magnetic field is assumed to be sufficiently strong enough to saturate the ferrofluid, and the variation of magnetization is approximated by a linear function of temperature difference. The governing boundary layer equations with boundary conditions are simplified by suitable transformations. Numerical solution is obtained by using the bvp4c function technique in MATLAB software. The numerical results are derived for the velocity, temperature, the skin friction coefficient, and the rate of heat transfer. The evaluated results are compared with analytical study documented in scientific literature. The present investigation illustrates that the fluid velocity is decreased with the increasing values of radiation parameter, magnetic parameter, and ferromagnetic interaction parameter, though is increased as the Prandtl number, Grashof number, permeable parameter and thermal slip parameter are increased. In this investigation, the suction/injection parameter had a good impact on the skin friction coefficient and the rate of heat transfer.


Sign in / Sign up

Export Citation Format

Share Document