An algorithm for the retrieval of sea surface wind fields using X-band TerraSAR-X data

2012 ◽  
Vol 33 (23) ◽  
pp. 7310-7336 ◽  
Author(s):  
Yongzheng Ren ◽  
Susanne Lehner ◽  
Stephan Brusch ◽  
Xiaoming Li ◽  
Mingxia He
2020 ◽  
Vol 12 (11) ◽  
pp. 1736
Author(s):  
Zhongqing Cao ◽  
Lixin Guo ◽  
Shifeng Kang ◽  
Xianhai Cheng ◽  
Qingliang Li ◽  
...  

In ground-based microwave radiometer remote sensing, low-elevation-angle (−3°~3°) radiation data are often discarded because they are considered to be of little value and are often difficult to model due to the complicated mechanism. Based on the observed X-band horizontal polarization low elevation angle microwave radiation data and the meteorological data at the same time, this study investigated the generation mechanism of low elevation angle brightness temperature (LEATB) and its relationship with meteorological data, i.e., temperature, humidity, and wind speed, under low sea state. As a result, one could find that the LEATB was sensitive to the atmosphere at the elevation angle between 1° to 3°, and a diurnal variation of the LEATB reached up to 10 K. This study also found a linear relationship between the LEATB and sea surface wind speed under low sea state at an elevation range from −3° to 0°, i.e., the brightness temperature decreased as the wind speed increased, which was inconsistent with the observations at the elevation angle from −10° to −5°. The variation of the LEATB difference according to the change in the over-the-horizon detection capability (OTHDC) of the shipborne microwave radar was examined to identify the reason for this phenomenon theoretically. The results showed that the LEATB difference was significantly influenced by a change in the OTHDC. Further, this study examined a remote sensing method to extract the sea surface wind speed data from experimental LEATB data under low sea state. The results demonstrated that the X-band horizontal polarization LEATBs were useful to retrieve the sea surface wind speed data at a reasonable accuracy—the root mean square error of 0.02408 m/s. Overall, this study proved the promising potential of the LEATB data for retrieving temperature profiles, humidity profiles, sea surface winds, and the OTHDC.


Ocean Science ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 121-132 ◽  
Author(s):  
A. Montuori ◽  
P. de Ruggiero ◽  
M. Migliaccio ◽  
S. Pierini ◽  
G. Spezie

Abstract. In this paper, X-band COSMO-SkyMed© synthetic aperture radar (SAR) wind field retrieval is investigated, and the obtained data are used to force a coastal ocean circulation model. The SAR data set consists of 60 X-band Level 1B Multi-Look Ground Detected ScanSAR Huge Region COSMO-SkyMed© SAR data, gathered in the southern Tyrrhenian Sea during the summer and winter seasons of 2010. The SAR-based wind vector field estimation is accomplished by resolving both the SAR-based wind speed and wind direction retrieval problems independently. The sea surface wind speed is retrieved by means of a SAR wind speed algorithm based on the azimuth cut-off procedure, while the sea surface wind direction is provided by means of a SAR wind direction algorithm based on the discrete wavelet transform multi-resolution analysis. The obtained wind fields are compared with ground truth data provided by both ASCAT scatterometer and ECMWF model wind fields. SAR-derived wind vector fields and ECMWF model wind data are used to construct a blended wind product regularly sampled in both space and time, which is then used to force a coastal circulation model of a southern Tyrrhenian coastal area to simulate wind-driven circulation processes. The modeling results show that X-band COSMO-SkyMed© SAR data can be valuable in providing effective wind fields for coastal circulation modeling.


2012 ◽  
Vol 9 (5) ◽  
pp. 3251-3279 ◽  
Author(s):  
A. Montuori ◽  
P. de Ruggiero ◽  
M. Migliaccio ◽  
S. Pierini ◽  
G. Spezie

Abstract. In this paper, X-band COSMO-SkyMed© SAR wind field retrieval is investigated to force coastal circulation modeling. The SAR data set consists of 60 X-band Level 1B Multi-Look Ground Detected ScanSAR Huge Region COSMO-SkyMed© SAR data, gathered in the Southern Tyrrhenian Sea during the Summer and Winter seasons of 2010. The SAR-based wind vector field estimation is accomplished by resolving both the SAR-based wind speed and wind direction retrieval problems independently. The sea surface wind speed is retrieved by means of a SAR wind speed algorithm based on the Azimuth cut-off procedure, while the sea surface wind direction is provided by means of a SAR wind direction algorithm based on the Discrete Wavelet Transform Multi-Resolution Analysis. The obtained wind fields are compared with ground truth data provided by both ASCAT scatterometer and ECMWF model wind fields. SAR-derived wind vector fields and ECMWF model wind data are used to construct a blended wind product regularly sampled in both space and time, which is then used to force a coastal circulation model of a Southern Tyrrhenian coastal area to simulate wind-driven circulation processes. The modeling results clearly show that X-band COSMO-SkyMed© SAR data can be valuable in providing effective wind fields for coastal circulation modeling.


Sign in / Sign up

Export Citation Format

Share Document