How to assess the accuracy of the individual tree-based forest inventory derived from remotely sensed data: a review

2016 ◽  
Vol 37 (19) ◽  
pp. 4521-4553 ◽  
Author(s):  
Dameng Yin ◽  
Le Wang
1996 ◽  
Vol 26 (9) ◽  
pp. 1709-1713 ◽  
Author(s):  
Paul C. Van Deusen

Growth modeling of forests at the individual tree and stand levels is a highly refined procedure for many forest types. A method to incorporate predictions from such models into a forest inventory system is developed. Variance components from the actual measurements and from the predicted measurements are used to estimate the variance of the combined predicted value. The only assumption required to justify this method is that the model estimate has a bias that does not change from one time period to the next. The estimation procedure proposed here can also incorporate remotely sensed information via a regression estimator.


2019 ◽  
Vol 231 ◽  
pp. 111256
Author(s):  
Jon Murray ◽  
David Gullick ◽  
George Alan Blackburn ◽  
James Duncan Whyatt ◽  
Christopher Edwards

Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 279 ◽  
Author(s):  
Ernest William Mauya ◽  
Joni Koskinen ◽  
Katri Tegel ◽  
Jarno Hämäläinen ◽  
Tuomo Kauranne ◽  
...  

Remotely sensed assisted forest inventory has emerged in the past decade as a robust and cost efficient method for generating accurate information on forest biophysical parameters. The launching and public access of ALOS PALSAR-2, Sentinel-1 (SAR), and Sentinel-2 together with the associated open-source software, has further increased the opportunity for application of remotely sensed data in forest inventories. In this study, we evaluated the ability of ALOS PALSAR-2, Sentinel-1 (SAR) and Sentinel-2 and their combinations to predict growing stock volume in small-scale forest plantations of Tanzania. The effects of two variable extraction approaches (i.e., centroid and weighted mean), seasonality (i.e., rainy and dry), and tree species on the prediction accuracy of growing stock volume when using each of the three remotely sensed data were also investigated. Statistical models relating growing stock volume and remotely sensed predictor variables at the plot-level were fitted using multiple linear regression. The models were evaluated using the k-fold cross validation and judged based on the relative root mean square error values (RMSEr). The results showed that: Sentinel-2 (RMSEr = 42.03% and pseudo − R2 = 0.63) and the combination of Sentinel-1 and Sentinel-2 (RMSEr = 46.98% and pseudo − R2 = 0.52), had better performance in predicting growing stock volume, as compared to Sentinel-1 (RMSEr = 59.48% and pseudo − R2 = 0.18) alone. Models fitted with variables extracted from the weighted mean approach, turned out to have relatively lower RMSEr % values, as compared to centroid approaches. Sentinel-2 rainy season based models had slightly smaller RMSEr values, as compared to dry season based models. Dense time series (i.e., annual) data resulted to the models with relatively lower RMSEr values, as compared to seasonal based models when using variables extracted from the weighted mean approach. For the centroid approach there was no notable difference between the models fitted using dense time series versus rain season based predictor variables. Stratifications based on tree species resulted into lower RMSEr values for Pinus patula tree species, as compared to other tree species. Finally, our study concluded that combination of Sentinel-1&2 as well as the use Sentinel-2 alone can be considered for remote-sensing assisted forest inventory in the small-scale plantation forests of Tanzania. Further studies on the effect of field plot size, stratification and statistical methods on the prediction accuracy are recommended.


2018 ◽  
Vol 10 (11) ◽  
pp. 1677
Author(s):  
Virpi Junttila ◽  
Tuomo Kauranne

Remotely sensed data-based models used in operational forest inventory usually give precise and accurate predictions on average, but they often suffer from systematic under- or over-estimation of extreme attribute values resulting in too narrow or skewed attribute distributions. We use a post-processing method based on the statistics of a proper, representative training set to correct the predictions and their probability intervals, attaining corrected predictions that reproduce the statistics of the whole population. Performance of the method is validated with three forest attributes from seven study sites in Finland with training set sizes from 50 to over 400 field plots. The results are compared to those of the uncorrected predictions given by linear models using airborne laser scanning data. The post-processing method improves the accuracy assessment linear fit between the predictions and the reference set by 35.4–51.8% and the distribution fit by 44.5–95.0%. The prediction root mean square error declines on the average by 6.3%. The systematic under- and over-estimation are reduced consistently with all training set sizes. The level of uncertainty is maintained well as the probability intervals cover the real uncertainty while keeping the average probability interval width similar to the one in uncorrected predictions.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 856 ◽  
Author(s):  
Gretchen G. Moisen ◽  
Kelly S. McConville ◽  
Todd A. Schroeder ◽  
Sean P. Healey ◽  
Mark V. Finco ◽  
...  

Throughout the last three decades, north central Georgia has experienced significant loss in forest land and tree cover. This study revealed the temporal patterns and thematic transitions associated with this loss by augmenting traditional forest inventory data with remotely sensed observations. In the US, there is a network of field plots measured consistently through time from the USDA Forest Service’s Forest Inventory and Analysis (FIA) Program, serial photo-based observations collected through image-based change estimation (ICE) methodology, and historical Landsat-based observations collected through TimeSync. The objective here was to evaluate how these three data sources could be used to best estimate land use and land cover (LULC) change. Using data collected in north central Georgia, we compared agreement between the three data sets, assessed the ability of each to yield adequately precise and temporally coherent estimates of land class status as well as detect net and transitional change, and we evaluated the effectiveness of using remotely sensed data in an auxiliary capacity to improve detection of statistically significant changes. With the exception of land cover from FIA plots, agreement between paired data sets for land use and cover was nearly 85%, and estimates of land class proportion were not significantly different for overlapping time intervals. Only the long time series of TimeSync data revealed significant change when conducting analyses over five-year intervals and aggregated land categories. Using ICE and TimeSync data through a two-phase estimator improved precision in estimates but did not achieve temporal coherence. We also show analytically that using auxiliary remotely sensed data for post-stratification for binary responses must be based on maps that are extremely accurate in order to see gains in precision. We conclude that, in order to report LULC trends in north central Georgia with adequate precision and temporal coherence, we need data collected on all the FIA plots each year over a long time series and broadly collapsed LULC classes.


2017 ◽  
Vol 51 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Adelheid Wallner ◽  
Alata Elatawneh ◽  
Thomas Schneider ◽  
Mengistie Kindu ◽  
Britta Ossig ◽  
...  

2011 ◽  
Vol 26 (4) ◽  
pp. 360-373 ◽  
Author(s):  
Guangxing Wang ◽  
Maozhen Zhang ◽  
George Z. Gertner ◽  
Tonny Oyana ◽  
Ronald E. McRoberts ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 1935
Author(s):  
Flavie Pelletier ◽  
Bianca N.I. Eskelson ◽  
Vicente J. Monleon ◽  
Yi-Chin Tseng

As the frequency and size of wildfires increase, accurate assessment of burn severity is essential for understanding fire effects and evaluating post-fire vegetation impacts. Remotely-sensed imagery allows for rapid assessment of burn severity, but it also needs to be field validated. Permanent forest inventory plots can provide burn severity information for the field validation of remotely-sensed burn severity metrics, although there is often a mismatch between the size and shape of the inventory plot and the resolution of the rasterized images. For this study, we used two distinct datasets: (1) ground-based inventory data from the United States national forest inventory to calculate ground-based burn severity; and (2) remotely-sensed data from the Monitoring Trends in Burn Severity (MTBS) database to calculate different remotely-sensed burn severity metrics based on six weighting scenarios. Our goals were to test which MTBS metric would best align with the burn severity of national inventory plots observed on the ground, and to identify the superior weighting scenarios to extract pixel values from a raster image in order to match burn severity of the national inventory plots. We fitted logistic and ordinal regression models to predict the ground-based burn severity from the remotely-sensed burn severity averaged from six weighting scenarios. Among the weighting scenarios, two scenarios assigned weights to pixels based on the area of a pixel that intersected any parts of a national inventory plot. Based on our analysis, 9-pixel weighted averages of the Relative differenced Normalized Burn Ratio (RdNBR) values best predicted the ground-based burn severity of national inventory plots. Finally, the pixel specific weights that we present can be used to link other Landsat-derived remote sensing metrics with United States forest inventory plots.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 550
Author(s):  
Dandan Xu ◽  
Haobin Wang ◽  
Weixin Xu ◽  
Zhaoqing Luan ◽  
Xia Xu

Accurate forest biomass estimation at the individual tree scale is the foundation of timber industry and forest management. It plays an important role in explaining ecological issues and small-scale processes. Remotely sensed images, across a range of spatial and temporal resolutions, with their advantages of non-destructive monitoring, are widely applied in forest biomass monitoring at global, ecoregion or community scales. However, the development of remote sensing applications for forest biomass at the individual tree scale has been relatively slow due to the constraints of spatial resolution and evaluation accuracy of remotely sensed data. With the improvements in platforms and spatial resolutions, as well as the development of remote sensing techniques, the potential for forest biomass estimation at the single tree level has been demonstrated. However, a comprehensive review of remote sensing of forest biomass scaled at individual trees has not been done. This review highlights the theoretical bases, challenges and future perspectives for Light Detection and Ranging (LiDAR) applications of individual trees scaled to whole forests. We summarize research on estimating individual tree volume and aboveground biomass (AGB) using Terrestrial Laser Scanning (TLS), Airborne Laser Scanning (ALS), Unmanned Aerial Vehicle Laser Scanning (UAV-LS) and Mobile Laser Scanning (MLS, including Vehicle-borne Laser Scanning (VLS) and Backpack Laser Scanning (BLS)) data.


Sign in / Sign up

Export Citation Format

Share Document