Mapping thermokarst lakes and ponds across permafrost landscapes in the Headwater Area of Yellow River on northeastern Qinghai-Tibet Plateau

2020 ◽  
Vol 41 (18) ◽  
pp. 7042-7067
Author(s):  
Raul-David Șerban ◽  
Huijun Jin ◽  
Mihaela Șerban ◽  
Dongliang Luo ◽  
Qingfeng Wang ◽  
...  
2021 ◽  
Author(s):  
Ze Ren ◽  
Cheng Zhang ◽  
Xia Li ◽  
Kang Ma ◽  
Kexin Feng ◽  
...  

Thermokarst lakes are forming from permafrost thaw and severely affected by accelerating climate change. Sediment and water in these lakes are distinct habitats but closely connected. However, our understanding of the differences and linkages between sediment and water in thermokarst lakes remain largely unknow, especially from the perspective of bacterial community patterns and underlying mechanisms. In this study, we examined bacterial communities in sediment and water in thermokarst lakes in the Yellow River Source area, Qinghai-Tibet Plateau. Bacterial taxa were divided to abundant and rare according to their relative abundance, and the Sorensen dissimilarity (βsor) was partitioned into turnover (βturn) and nestedness (βnest). The results showed that the whole bacterial communities as well as the abundant and rare subcommunities differed substantially between sediment and water, in terms of taxonomical composition, α-diversity, and β-diversity. Sediment had significantly lower α-diversity indexes but higher β-diversity than water. Abundant taxa had significantly higher relative abundances but lower α-diversity and β-diversity than rare taxa. Moreover, bacterial communities are predominantly governed by strong turnover processes (βturn/βsor ratio of 0.925). Abundant subcommunities were significantly lower in βturn/βsor ratio compared to rare subcommunities. Bacterial communities in sediment had a significantly higher βturn/βsor ratio than in water. The results suggest that the bacterial communities of thermokarst lakes, especially rare subcommunities or particularly in sediment, might be strongly structured by environmental filtering and geographical isolation, leading to compositional distinct. By revealing bacterial communities in sediment and water, this integral study increased our current knowledge of thermokarst lakes, enhancing our understanding of the community assembly rules and ecosystem structures and processes of these rapid changing and vulnerable ecosystems.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2269
Author(s):  
Jinlong Li ◽  
Wei Wang ◽  
Dahao Wang ◽  
Jiaqi Li ◽  
Jie Dong

Thermokarst lakes are a ubiquitous landscape feature that impact the thermal state, hydrological process, ecological environment, and engineering stability of the permafrost. This study established the hydrochemistry and stable isotope (δ18O and δD) variations of lake water and groundwater in a typical basin located in the central Qinghai–Tibet Plateau (QTP) of China. The results showed that most water samples could be classified as slightly alkaline, with high levels of salinity and hardness, while the dominant water types were HCO3-CO3 and Cl types. Natural hydrochemical processes, such as mineral dissolution, cation exchange, and groundwater evaporation, had strong impacts on the groundwater chemistry in this region. Dissolution of halite and carbonate minerals causes the major reactions controlling water chemistry in this basin. Additionally, the calculation of the saturation index (SI) values suggested that aragonite, calcite, and dolomite are saturated, while halite is not. Based on the analysis of the stable isotope characteristics, atmospheric precipitation, groundwater, and meltwater from the permafrost are the major sources of thermokarst lakes. Moreover, the evaporation-to-inflow ratio (E/I) indicated that all of the lakes continuously expanded and rapidly developed. Overall, groundwater is an crucial source of lake recharge and its hydrochemical characteristics also have a certain impact on lake water quality.


Geomorphology ◽  
2011 ◽  
Vol 132 (3-4) ◽  
pp. 222-233 ◽  
Author(s):  
Fujun Niu ◽  
Zhanju Lin ◽  
Hua Liu ◽  
Jiahao Lu

2016 ◽  
Vol 47 (6) ◽  
pp. 1253-1262 ◽  
Author(s):  
M. J. Zheng ◽  
C. W. Wan ◽  
M. D. Du ◽  
X. D. Zhou ◽  
P. Yi ◽  
...  

A pioneering rapid and direct measurement of dissolved 222Rn in the field has been used here to explore interaction between surface and groundwater in the source area of the Yellow River (SAYR). The results indicate average 222Rn activity of 2,371 Bq/m3 in surface water and 27,835 Bq/m3 in groundwater. The high 222Rn activity (up to 9,133 Bq/m3) found in the southeast part of the SAYR suggests possible influence of permafrost on the exchange between surface water and groundwater. The remarkable contrast among the different samples of a stream in the Shuangchagou basin, a typical basin in the SAYR, clearly indicates groundwater infiltration along the north tributary and occurrence of groundwater end-member in the south tributary. Considering no 222Rn decay and atmospheric evasion, the daily average fraction of groundwater input to the surface water through the end-member in a location (S1) is estimated at 19%. Despite the up to 40% uncertainty, this is the first estimate of a reference value for groundwater input in this basin and which can be improved in the future with more samples and measurements. 222Rn can be a rapid and easily measured tracer of surface water–groundwater interaction for future investigation in the Qinghai-Tibet Plateau.


2013 ◽  
Vol 23 (5) ◽  
pp. 833-848 ◽  
Author(s):  
Zhiwei Li ◽  
Zhaoyin Wang ◽  
Baozhu Pan ◽  
Jun Du ◽  
Gary Brierley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document