Single-frame super-resolution for high resolution optical remote-sensing data products

2021 ◽  
Vol 42 (21) ◽  
pp. 8099-8123
Author(s):  
Chao Wang ◽  
Zhu Ruifei ◽  
Yang Bai ◽  
Peng Zhang ◽  
Haiyang Fan
2020 ◽  
Author(s):  
Johannes Heisig ◽  
Cyrus Samimi

<p>Central European forests face challenges with climate changing much faster than they can adapt. Extremely hot and dry summers like in 2018 deprive forests of soil moisture, leaving them with low ground water levels. While individuals with deep and well-established root systems survive, young individuals and shallow-rooted species perish.</p><p>In southern Germany, die-off of single trees or small groups got noticeable recently. Such effects of harsher conditions rarely occur over large areas, but more in a spotted, irregular manner. This makes the phenomenon difficult to detect and to estimate its extent. The share of trees lately deteriorated may be larger than expected and represent a considerable portion of forests. Therefore, we see the great need for monitoring. Remote sensing data is suitable to examine inaccessible areas at a large scale. To quantify mortality of individual trees among a majority of vital ones, sensor platforms and respective data have to fulfill certain criteria regarding spatial, temporal and spectral resolution. Dead trees can be distinguished from others due to discoloration and defoliation. This change in appearance affects the spectral response, even in pixels larger than the tree’s extent.</p><p>This study aims at recommending a suitable spatial scale for space-borne multispectral imagery products to achieve this task. We evaluate commercial and free remote sensing data products and their ability to estimate fractional cover of dead vegetation. Satellite data employed in this study comes from Landsat 8 (30 m), Sentinel-2 (10 m), RapidEye (6.5 m) and PlanetScope (3 m). Classification performance is tested against high-resolution multispectral aerial imagery (17 cm) acquired with a Micasense RedEdge-M camera.</p><p>High-resolution Micasense images are capable of detecting single dead trees, even after downgrading the resolution from 17 cm to 3 m. For all data products tested, fraction of dead trees per pixel did not differ significantly among land cover types (dead vegetation, vital vegetation, pavement, open soil). This indicates that individual dead trees may not be detectable in vital forest stands. The finding even seems to be valid for a resolution of 3 m (PlanetScope), which is identical to the downgraded Micasense data. In the near future the detection of this phenomenon might profit from technical developments towards even higher spatial detail of space-borne sensors. Alternatively, high resolution images from aerial campaigns, manned or unmanned, could bridge this gap when flight time and spatial coverage are increased significantly and facilitating policies are in place.</p>


2020 ◽  
Vol 12 (24) ◽  
pp. 4037
Author(s):  
Zhi Li ◽  
Xiaomei Yang

Intra-urban surface water (IUSW) is an indispensable resource for urban living. Accurately acquiring and updating the distributions of IUSW resources is significant for human settlement environments and urban ecosystem services. High-resolution optical remote sensing data are used widely in the detailed monitoring of IUSW because of their characteristics of high resolution, large width, and high frequency. The lack of spectral information in high-resolution remote sensing data, however, has led to the IUSW misclassification problem, which is difficult to fully solve by relying only on spatial features. In addition, with an increasing abundance of water products, it is equally important to explore methods for using water products to further enhance the automatic acquisition of IUSW. In this study, we developed an automated urban surface-water area extraction method (AUSWAEM) to obtain accurate IUSW by fusing GaoFen-1 (GF-1) images, Landsat-8 Operational Land Imager (OLI) images, and GlobeLand30 products. First, we derived morphological large-area/small-area water indices to increase the salience of IUSW features. Then, we applied an adaptive segmentation model based on the GlobeLand30 product to obtain the initial results of IUSW. Finally, we constructed a decision-level fusion model based on expert knowledge to eliminate the problem of misclassification resulting from insufficient information from high-resolution remote sensing spectra and obtained the final IUSW results. We used a three-case study in China (i.e., Tianjin, Shanghai, and Guangzhou) to validate this method based on remotely sensed images, such as those from GF-1 and Landsat-8 OLI. We performed a comparative analysis of the results from the proposed method and the results from the normalized differential water index, with average kappa coefficients of 0.91 and 0.55, respectively, which indicated that the AUSWAEM improved the average kappa coefficient by 0.36 and obtained accurate spatial patterns of IUSW. Furthermore, the AUSWAEM displayed more stable and robust performance under different environmental conditions. Therefore, the AUSWAEM is a promising technique for extracting IUSW with more accurate and automated detection performance.


2021 ◽  
Vol 10 (02) ◽  
pp. 25284-25291
Author(s):  
Palani Murugan ◽  
Vivek Kumar Gautam ◽  
V. Ramanathan

In recent days, requirement of high spatial resolution remote sensing data in various fields has increased tremendously.  High resolution satellite remote sensing data is obtained with long focal length optical systems and low altitude. As fabrication of high-resolution optical system and accommodating on the satellite is a challenging task, various alternate methods are being explored to get high resolution imageries. Alternately the high-resolution data can be obtained from super resolution techniques. The super resolution technique uses single or multiple low-resolution mis-registered data sets to generate high resolution data set.  Various algorithms are employed in super resolution technique to derive high spatial resolution. In this paper we have compared two methods namely overlapping and interleaving methods and their capability in generating high resolution data are presented.


Author(s):  
M. Langheinrich ◽  
P. Fischer ◽  
M. Probeck ◽  
G. Ramminger ◽  
T. Wagner ◽  
...  

The growing number of available optical remote sensing data providing large spatial and temporal coverage enables the coherent and gapless observation of the earth’s surface on the scale of whole countries or continents. To produce datasets of that size, individual satellite scenes have to be stitched together forming so-called mosaics. Here the problem arises that the different images feature varying radiometric properties depending on the momentary acquisition conditions. The interpretation of optical remote sensing data is to a great extent based on the analysis of the spectral composition of an observed surface reflection. Therefore the normalization of all images included in a large image mosaic is necessary to ensure consistent results concerning the application of procedures to the whole dataset. In this work an algorithm is described which enables the automated spectral harmonization of satellite images to a reference scene. As the stable and satisfying functionality of the proposed algorithm was already put to operational use to process a high number of SPOT-4/-5, IRS LISS-III and Landsat-5 scenes in the frame of the European Environment Agency's Copernicus/GMES Initial Operations (GIO) High-Resolution Layer (HRL) mapping of the HRL Forest for 20 Western, Central and (South)Eastern European countries, it is further evaluated on its reliability concerning the application to newer Sentinel-2 multispectral imaging products. The results show that the algorithm is comparably efficient for the processing of satellite image data from sources other than the sensor configurations it was originally designed for.


2005 ◽  
Author(s):  
Abdelaziz Kallel ◽  
Mehrez Zribi ◽  
Sylvie Le Hégarat-Mascle ◽  
Sylvain Massuel ◽  
Luc Descroix

2002 ◽  
Vol 8 (1) ◽  
pp. 15-22
Author(s):  
V.N. Astapenko ◽  
◽  
Ye.I. Bushuev ◽  
V.P. Zubko ◽  
V.I. Ivanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document