scholarly journals Fusion of High- and Medium-Resolution Optical Remote Sensing Imagery and GlobeLand30 Products for the Automated Detection of Intra-Urban Surface Water

2020 ◽  
Vol 12 (24) ◽  
pp. 4037
Author(s):  
Zhi Li ◽  
Xiaomei Yang

Intra-urban surface water (IUSW) is an indispensable resource for urban living. Accurately acquiring and updating the distributions of IUSW resources is significant for human settlement environments and urban ecosystem services. High-resolution optical remote sensing data are used widely in the detailed monitoring of IUSW because of their characteristics of high resolution, large width, and high frequency. The lack of spectral information in high-resolution remote sensing data, however, has led to the IUSW misclassification problem, which is difficult to fully solve by relying only on spatial features. In addition, with an increasing abundance of water products, it is equally important to explore methods for using water products to further enhance the automatic acquisition of IUSW. In this study, we developed an automated urban surface-water area extraction method (AUSWAEM) to obtain accurate IUSW by fusing GaoFen-1 (GF-1) images, Landsat-8 Operational Land Imager (OLI) images, and GlobeLand30 products. First, we derived morphological large-area/small-area water indices to increase the salience of IUSW features. Then, we applied an adaptive segmentation model based on the GlobeLand30 product to obtain the initial results of IUSW. Finally, we constructed a decision-level fusion model based on expert knowledge to eliminate the problem of misclassification resulting from insufficient information from high-resolution remote sensing spectra and obtained the final IUSW results. We used a three-case study in China (i.e., Tianjin, Shanghai, and Guangzhou) to validate this method based on remotely sensed images, such as those from GF-1 and Landsat-8 OLI. We performed a comparative analysis of the results from the proposed method and the results from the normalized differential water index, with average kappa coefficients of 0.91 and 0.55, respectively, which indicated that the AUSWAEM improved the average kappa coefficient by 0.36 and obtained accurate spatial patterns of IUSW. Furthermore, the AUSWAEM displayed more stable and robust performance under different environmental conditions. Therefore, the AUSWAEM is a promising technique for extracting IUSW with more accurate and automated detection performance.

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 417 ◽  
Author(s):  
Mohamed Abdelkareem ◽  
Fathy Abdalla ◽  
Samar Y. Mohamed ◽  
Farouk El-Baz

At present, the Arabian Peninsula is one of the driest regions on Earth; however, this area experienced heavy rainfall in the past thousand years. During this period, catchments received substantial amounts of surface water and sustained vast networks of streams and paleolakes, which are currently inactive. The Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture Radar (PALSAR) data reveal paleohydrologic features buried under shallow aeolian deposits in many areas of the ad-Dawasir, Sahba, Rimah/Batin, and as-Sirhan wadis. Optical remote-sensing data support that the middle of the trans-peninsula Wadi Rimah/Batin, which extends for ~1200 km from the Arabian Shield to Kuwait and covers ~200,000 km2, is dammed by linear sand dunes formed by changes in climate conditions. Integrating Landsat 8 Operational Land Imager (OLI), Geo-Eye, Shuttle Radar Topography Mission (SRTM) digital elevation model, and ALOS/PALSAR data allowed for the characterization of paleodrainage reversals and diversions shaped by structural and volcanic activity. Evidence of streams abruptly shifting from one catchment to another is preserved in Wadi ad-Dawasir along the fault trace. Volcanic activity in the past few thousand years in northern Saudi Arabia has also changed the slope of the land and reversed drainage systems. Relics of earlier drainage directions are well maintained as paleoslopes and wide upstream patterns. This study found that paleohydrologic activity in Saudi Arabia is impacted by changes in climate and by structural and volcanic activity, resulting in changes to stream direction and activity. Overall, the integration of radar and optical remote-sensing data is significant for deciphering past hydrologic activity and for predicting potential water resource areas.


2020 ◽  
Author(s):  
Johannes Heisig ◽  
Cyrus Samimi

<p>Central European forests face challenges with climate changing much faster than they can adapt. Extremely hot and dry summers like in 2018 deprive forests of soil moisture, leaving them with low ground water levels. While individuals with deep and well-established root systems survive, young individuals and shallow-rooted species perish.</p><p>In southern Germany, die-off of single trees or small groups got noticeable recently. Such effects of harsher conditions rarely occur over large areas, but more in a spotted, irregular manner. This makes the phenomenon difficult to detect and to estimate its extent. The share of trees lately deteriorated may be larger than expected and represent a considerable portion of forests. Therefore, we see the great need for monitoring. Remote sensing data is suitable to examine inaccessible areas at a large scale. To quantify mortality of individual trees among a majority of vital ones, sensor platforms and respective data have to fulfill certain criteria regarding spatial, temporal and spectral resolution. Dead trees can be distinguished from others due to discoloration and defoliation. This change in appearance affects the spectral response, even in pixels larger than the tree’s extent.</p><p>This study aims at recommending a suitable spatial scale for space-borne multispectral imagery products to achieve this task. We evaluate commercial and free remote sensing data products and their ability to estimate fractional cover of dead vegetation. Satellite data employed in this study comes from Landsat 8 (30 m), Sentinel-2 (10 m), RapidEye (6.5 m) and PlanetScope (3 m). Classification performance is tested against high-resolution multispectral aerial imagery (17 cm) acquired with a Micasense RedEdge-M camera.</p><p>High-resolution Micasense images are capable of detecting single dead trees, even after downgrading the resolution from 17 cm to 3 m. For all data products tested, fraction of dead trees per pixel did not differ significantly among land cover types (dead vegetation, vital vegetation, pavement, open soil). This indicates that individual dead trees may not be detectable in vital forest stands. The finding even seems to be valid for a resolution of 3 m (PlanetScope), which is identical to the downgraded Micasense data. In the near future the detection of this phenomenon might profit from technical developments towards even higher spatial detail of space-borne sensors. Alternatively, high resolution images from aerial campaigns, manned or unmanned, could bridge this gap when flight time and spatial coverage are increased significantly and facilitating policies are in place.</p>


2018 ◽  
Vol 10 (3) ◽  
pp. 646 ◽  
Author(s):  
Ayman Abdel-Hamid ◽  
Olena Dubovyk ◽  
Islam Abou El-Magd ◽  
Gunter Menz

Author(s):  
Pham Vu Dong ◽  
Bui Quang Thanh ◽  
Nguyen Quoc Huy ◽  
Vo Hong Anh ◽  
Pham Van Manh

Cloud detection is a significant task in optical remote sensing to reconstruct the contaminated cloud area from multi-temporal satellite images. Besides, the rapid development of machine learning techniques, especially deep learning algorithms, can detect clouds over a large area in optical remote sensing data. In this study, the method based on the proposed deep-learning method called ODC-Cloud, which was built on convolutional blocks and integrating with the Open Data Cube (ODC) platform. The results showed that our proposed model achieved an overall 90% accuracy in detecting cloud in Landsat 8 OLI imagery and successfully integrated with the ODC to perform multi-scale and multi-temporal analysis. This is a pioneer study in techniques of storing and analyzing big optical remote sensing data.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 100
Author(s):  
Sanjiwana Arjasakusuma ◽  
Sandiaga Swahyu Kusuma ◽  
Siti Saringatin ◽  
Pramaditya Wicaksono ◽  
Bachtiar Wahyu Mutaqin ◽  
...  

Coastal regions are one of the most vulnerable areas to the effects of global warming, which is accompanied by an increase in mean sea level and changing shoreline configurations. In Indonesia, the socioeconomic importance of coastal regions where the most populated cities are located is high. However, shoreline changes in Indonesia are relatively understudied. In particular, detailed monitoring with remote sensing data is lacking despite the abundance of datasets and the availability of easily accessible cloud computing platforms such as the Google Earth Engine that are able to perform multi-temporal and multi-sensor mapping. Our study aimed to assess shoreline changes in East Java Province Indonesia from 2000 to 2019 using variables derived from a multi-sensor combination of optical remote sensing data (Landsat-7 ETM and Landsat-8 OLI) and radar data (ALOS Palsar and Sentinel-1 data). Random forest and GMO maximum entropy (GMO-Maxent) accuracy was assessed for the classification of land and water, and the land polygons from the best algorithm were used for deriving shorelines. In addition, shoreline changes were quantified using Digital Shoreline Analysis System (DSAS). Our results showed that coastal accretion is more profound than coastal erosion in East Java Province with average rates of change of +4.12 (end point rate, EPR) and +4.26 m/year (weighted linear rate, WLR) from 2000 to 2019. In addition, some parts of the shorelines in the study area experienced massive changes, especially in the deltas of the Bengawan Solo and Brantas/Porong river with rates of change (EPR) between −87.44 to +89.65 and −18.98 to +111.75 m/year, respectively. In the study areas, coastal erosion happened mostly in the mangrove and aquaculture areas, while the accreted areas were used mostly as aquaculture and mangrove areas. The massive shoreline changes in this area require better monitoring to mitigate the potential risks of coastal erosion and to better manage coastal sedimentation.


2016 ◽  
Vol 40 (2) ◽  
pp. 322-351 ◽  
Author(s):  
Jadunandan Dash ◽  
Booker O. Ogutu

Since the launch of the first Landsat satellite in the early 1970s, the field of space-borne optical remote sensing has made significant progress. Advances have been made in all aspects of optical remote sensing data, including improved spatial, temporal, spectral and radiometric resolutions, which have increased the uptake of these data by wider scientific communities. Flagship satellite missions such as NASA’s Terra and Aqua and ESA’s Envisat with their high temporal (<3days) and spectral (15–36 bands) resolutions opened new opportunities for routine monitoring of various aspects of terrestrial ecosystems at the global scale and have provided greater understanding of critical biophysical processes in the terrestrial ecosystem. The launch of new satellite sensors such as Landsat 8 and the European Space Agency’s Copernicus Sentinel missions (e.g. Sentinel 2 with improved spatial resolution (10–60 m) and potential revisit time of five days) is set to revolutionise the availability and use of remote sensing data in global terrestrial ecosystem monitoring. Furthermore, the recent move towards use of constellations of nanosatellites (e.g. the Flock missions by Planet Labs) to collect on-demand high spatial and temporal resolution optical remote sensing data would enable uptake of these data for operational monitoring. As a result of increase in data availability, optical remote sensing data are now increasingly used to support a number of operational services (e.g. land monitoring, atmosphere monitoring and climate change studies). However, many challenges still remain in exploiting the growing volume of optical remote sensing data to monitor global terrestrial ecosystems. These challenges include ensuring the highest data quality both in terms of the sensitivity of sensors and the derived biophysical products, affordability and availability of the data and continuity of data acquisition. This review provides an overview of the developments in space-borne optical remote sensing in the past decade and discusses a selection of aspects of global terrestrial ecosystems where the data are currently used. It concludes by highlighting some of the challenges and opportunities of using optical remote sensing data in monitoring global terrestrial ecosystems.


Sign in / Sign up

Export Citation Format

Share Document