Remotely sensed short-term changes in noctilucent algae blooms in the Bohai Sea

2021 ◽  
Vol 42 (22) ◽  
pp. 8661-8674
Author(s):  
Liang Ma ◽  
Yan Liu ◽  
Bowen Zhang ◽  
Lingxing Lu ◽  
Guangshun Sun ◽  
...  
2013 ◽  
Vol 423-426 ◽  
pp. 1344-1350
Author(s):  
Xiang Cui Lv ◽  
Dao Sheng Wang ◽  
De Kui Yuan ◽  
Jian Hua Tao

It is necessary to obtain a further understanding of the behaviors and characteristics of water waves in the Bohai Sea for the coastal engineering construction and environment protection in this area. The SWAN (Simulating Waves Nearshore) model, a third-generation wave spectral model on the basis of wave action conservation has been applied to study the water waves in the Bohai Sea by several researchers, and encouraging results have been obtained. However, the calibrated parameter for a wave process at an individual station does not have universal applicability for other stations, which causing problems to anyalyze the wave characteristics in the Bohai Sea. Thus, in this study how to calibrate the SWAN model in the Bohai Sea was analyzed carefully in terms of five sets of short-term wave data and one set of long-term wave data at Tanggu. It was found that wind, whitecapping, bottom mechanisms of wave source function and tide current are the four main factors in the process of wave development. A set of optimized parameters suitable for both long-term and short-term wave processes in the Bohai Sea is suggested through the sensitivity analyses of these elements. Comparisons between the simulated results and the field measured data show that the validated model can provide more accurate results for both long-term and short-term simulations and can be used to study the wave characteristics in the Bohai Sea.


2014 ◽  
Vol 522-524 ◽  
pp. 983-989
Author(s):  
Dao Sheng Wang ◽  
Xiang Cui Lv ◽  
De Kui Yuan

The SWAN (Simulating WAves Nearshore) model was applied to study the characteristics of water waves in the Bohai Sea. The model was calibrated against both short-term and long-term field measured data from six different stations in the Bohai Sea and the computational results are in good agreement with the measured data. Then the wave process during 1999 to 2009 in the Bohai Sea was simulated using the calibrated model. The wave characteristics such as significant wave height, average period, dominant wave direction and their seasonal variations were analyzed based on the simulated results. The distributions of wave height and wave period are similar to those of the previous studies, but the wave height is slightly smaller than that given by other researchers.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pengfei Ning ◽  
Cuicui Zhang ◽  
Xuefeng Zhang ◽  
Xiaoyi Jiang

Global warming has intensified the rise in sea levels and has caused severe ecological disasters in shallow coastal waters such as the Northeastern China's Bohai Sea. The prediction of the sea surface height anomaly (SSHA) has great significance in the context of monitoring changes in sea levels. However, the non-linearity of SSHA due to the occurrence of dynamic physical phenomena poses a challenge to current methods(e.g., ROMS, MITgcm) that aim to provide accurate predictions of SSHA. In this study, we have developed an optimized Simple Recurrent Unit (SRU) deep network for the short- to medium-term prediction of the SSHA using Archiving Validation and International of Satellites Oceanographic (AVISO) data. Thanks to the parallel structure of the SRU, the computational complexity of the deep network can be reduced to a considerable extent and this makes the short- to medium-term prediction more efficient. To avoid over-fitting and a vanishing gradient, a skip-connection strategy has been utilized for model optimization, and this improves significantly the accuracy of prediction. Detailed experiments were carried out in the Bohai Sea to evaluate the proposed model and it was demonstrated that the proposed framework (i) outperformed significantly the current deep learning methods such as the BP (Backpropagation), the RNN (Recurrent Neural Network), the LSTM (Long Short-term Memory), and the GRU (Gated Recurrent Unit) algorithms for 1, 5, 20, and 300-day prediction; (ii) can predict the short-term trend in the SSHA (for the next day or 2 days) in real time; and (iii) achieves medium-term prediction in seconds for the next 5–20 days and shows great potential for applications requiring medium- to long-term predictions. To the best of our knowledge, this is the first paper that investigates the effectiveness of the SRU deep learning model for short- to medium-term SSHA predictions.


2018 ◽  
Vol 25 (2) ◽  
pp. 229
Author(s):  
Zhongyi LI ◽  
Qiang WU ◽  
Xiujuan SHAN ◽  
Tao YANG ◽  
Fangqun DAI ◽  
...  

2012 ◽  
Vol 47 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Wang Yan ◽  
Huang Lin ◽  
Gu Haifeng ◽  
Li Shuang ◽  
Li Shaoshan

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1509
Author(s):  
Yuanyi Li ◽  
Huan Feng ◽  
Guillaume Vigouroux ◽  
Dekui Yuan ◽  
Guangyu Zhang ◽  
...  

A storm surge is a complex phenomenon in which waves, tide and current interact. Even though wind is the predominant force driving the surge, waves and tidal phase are also important factors that influence the mass and momentum transport during the surge. Devastating storm surges often occur in the Bohai Sea, a semi-enclosed shallow sea in North China, due to extreme storms. However, the effects of waves on storm surges in the Bohai Sea have not been quantified and the mechanisms responsible for the higher surges that affect part of the Bohai Sea have not been thoroughly studied. In this study, we set up a storm surge model, considering coupled effects of tides and waves on the surges. Validation against measured data shows that the coupled model is capable of simulating storm surges in the Bohai Sea. The simulation results indicate that the longshore currents, which are induced by the large gradient of radiation stress due to wave deformation, are one of the main contributors to the higher surges occurring in some coastal regions. The gently varying bathymetry is another factor contributing to these surges. With such bathymetry, the wave force direction is nearly uniform, and pushes a large amount of water in that direction. Under these conditions, the water accumulates in some parts of the coast, leading to higher surges in nearby coastal regions such as the south coast of the Bohai Bay and the west and south coasts of the Laizhou Bay. Results analysis also shows that the tidal phase at which the surge occurs influences the wave–current interactions, and these interactions are more evident in shallow waters. Neglecting these interactions can lead to inaccurate predictions of the storm surges due to overestimation or underestimation of wave-induced set-up.


Harmful Algae ◽  
2021 ◽  
Vol 106 ◽  
pp. 102066
Author(s):  
Hailong Huang ◽  
Qing Xu ◽  
Kate Gibson ◽  
Yang Chen ◽  
Nansheng Chen

2019 ◽  
Vol 16 (22) ◽  
pp. 4485-4496 ◽  
Author(s):  
Ye Tian ◽  
Chao Xue ◽  
Chun-Ying Liu ◽  
Gui-Peng Yang ◽  
Pei-Feng Li ◽  
...  

Abstract. Nitric oxide (NO) is a short-lived compound of the marine nitrogen cycle; however, our knowledge about its oceanic distribution and turnover is rudimentary. Here we present the measurements of dissolved NO in the surface and bottom layers at 75 stations in the Bohai Sea (BS) and the Yellow Sea (YS) in June 2011. Moreover, NO photoproduction rates were determined at 27 stations in both seas. The NO concentrations in the surface and bottom layers were highly variable and ranged from below the limit of detection (i.e., 32 pmol L−1) to 616 pmol L−1 in the surface layer and 482 pmol L−1 in the bottom layer. There was no significant difference (p>0.05) between the mean NO concentrations in the surface (186±108 pmol L−1) and bottom (174±123 pmol L−1) layers. A decreasing trend of NO in bottom-layer concentrations with salinity indicates a NO input by submarine groundwater discharge. NO in the surface layer was supersaturated at all stations during both day and night and therefore the BS and YS were a persistent source of NO to the atmosphere at the time of our measurements. The average flux was about 4.5×10-16 mol cm−2 s−1 and the flux showed significant positive relationship with the wind speed. The accumulation of NO during daytime was a result of photochemical production, and photoproduction rates were correlated to illuminance. The persistent nighttime NO supersaturation pointed to an unidentified NO dark production. NO sea-to-air flux densities were much lower than the NO photoproduction rates. Therefore, we conclude that the bulk of the NO produced in the mixed layer was rapidly consumed before its release to the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document