Predictors of blastocyst formation rate in elective day 5 transfer cycle

2019 ◽  
Vol 40 (6) ◽  
pp. 863-868
Author(s):  
Yeon Hee Hong ◽  
Hye Kyeong Kim ◽  
Eun Jee Nho ◽  
Hye Won Youm ◽  
Seul Ki Kim ◽  
...  
2018 ◽  
Vol 30 (10) ◽  
pp. 1342 ◽  
Author(s):  
Zhao-Bo Luo ◽  
Long Jin ◽  
Qing Guo ◽  
Jun-Xia Wang ◽  
Xiao-Xu Xing ◽  
...  

Accumulating evidence suggests that aberrant epigenetic reprogramming and low pluripotency of donor nuclei lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). The present study demonstrates that treatment with the small molecule RepSox alone upregulates the expression of pluripotency-related genes in porcine SCNT embryos. Treatment with the histone deacetylase inhibitor LBH589 significantly increased the blastocyst formation rate, whereas treatment with RepSox did not. Cotreatment with 12.5 μM RepSox and 50 nM LBH589 (RepSox + LBH589) for 24 h significantly increased the blastocyst formation rate compared with that of untreated embryos (26.9% vs 8.5% respectively; P < 0.05). Furthermore, the expression of pluripotency-related genes octamer-binding transcription factor 4 (NANOG) and SRY (sex determining region Y)-box 2 (SOX2) were found to significantly increased in the RepSox + LBH589 compared with control group at both the 4-cell and blastocyst stages. In particular, the expression of NANOG was 135-fold higher at the blastocyst stage in the RepSox + LBH589 group. Moreover, RepSox + LBH589 improved epigenetic reprogramming. In summary, RepSox + LBH589 increases the expression of developmentally important genes, optimises epigenetic reprogramming and improves the in vitro development of porcine SCNT embryos.


2021 ◽  
Author(s):  
Jian Xu ◽  
Li Yang ◽  
Zhi-Heng Chen ◽  
Min-Na Yin ◽  
Juan Chen ◽  
...  

Abstract Objective: To investigate whether the euploidy rate of blastocysts derived from smooth endoplasmic reticulum (SERa) positive cycles and oocytes are impacted.Design: Retrospective cohort study.Setting: A tertiary hospital-based reproductive medicine center.Patient(s): A total of 601 preimplantation genetic testing (PGT) cycles with obtained oocytes in our center between April 2017 and May 2021 were included in the study. Intervention(s): Women>35 years and PGT cycles with chromosomal structural rearrangements (PGT-SR) were excluded. Embryological and blastocyst ploidy outcomes were compared between SERa+ oocyte, sibling SERa- oocytes and oocytes in SERa- cycles.Main Outcome Measure(s): Embryological outcomes and blastocyst euploidy rate.Results: No significant difference was observed in the normal fertilization rate (82.1 % vs. 77.8 % vs. 83.1 %, respectively, P=0.061), blastocyst formation rate (71.0 % vs. 72.5 % vs. 68.4 %, respectively, P=0.393), good quality blastocyst formation rate (46.4 % vs. 48.3 % vs. 42.6 %, respectively, P=0.198) between the SERa+ oocyte group, sibling SERa- oocyte group and SERa- oocyte group. No significant difference was observed in the euploidy rate (50.0 % vs. 62.5 % vs. 63.3 %, respectively, P=0.324), mosaic rate (12.5 % vs. 9.7 % vs. 13.4 %, respectively, P=0.506) and aneuploidy rate (37.5 % vs. 27.8% vs. 23.2 %, respectively, P=0.137) between the three groups.Conclusion: Our results suggest that the euploidy rate of blastocysts derived from SERa+ cycles and oocytes are not impacted.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Suthar ◽  
N Sharma ◽  
V Mishra ◽  
R Aggarwal ◽  
H Sheth ◽  
...  

Abstract Study question Does semen hyper viscosity effects blastocyst formation rate Summary answer Hyper viscosity of semen sample later results in poor blastocyst formation rate and lower implantation rate. What is known already Normal range of semen hyper viscosity ranges between 12–29%.Highly viscous semen samples impairs the physical and chemical characteristics of seminal fluid and due to which seminal oxidative damage increases which further increases the ROS and reduces the sperm motility there are some factors that can affect the seminal viscosity out of which one is Male accessory gland infection, Hypo function of prostate seminal vesicles and varicoceles. SHV create hindrance in semen preparation. Study design, size, duration Retrospective study was conducted from June 2019 to Oct 2020 at IVF unit IKDRC hospital. Participants/materials, setting, methods 142 patients were enrolled from June 2019 to Oct 2020 in IVF unit IKDRC hospital and divided into two groups. Group A (n = 83) patients with hyper semen viscosity and Group B (n = 69) patients with normal semen viscosity, inclusion and exclusion criteria’s were same for both the groups, only patient with normozoospermia were taken. Semen analysis was done by using WHO manual 2010. Main results and the role of chance In group A with hyper semen viscosity fertilization rate was (49.2% vs. 70% p = &lt;0.001) vs in group B with normal semen viscosity which is significantly higher in group B, Blastocyst formation rate ( 18.4% vs 35% p = &lt;0.01) and implantation rate (9.4% vs 20% p = &lt;0.005) both are significantly higher in group B . Which implies fertilization rate , blastocyst formation rate and implantation rate is significantly lower in patients with semen hyper viscosity. Limitations, reasons for caution Larger randomized control studies are needed to strengthen these results. Wider implications of the findings: Our study demonstrates that patients having higher semen viscosity have poor blastocyst formation rate and implantation rate due to oxidative stress. Trial registration number Not applicable


2016 ◽  
Vol 106 (3) ◽  
pp. e356
Author(s):  
N. Basile ◽  
B. Aparicio-Ruiz ◽  
J. Garcia Velasco ◽  
M. de los Santos ◽  
J. Remohi Gimenez ◽  
...  

2006 ◽  
Vol 18 (2) ◽  
pp. 119
Author(s):  
H. Bagis ◽  
S. Arat ◽  
H. Odaman ◽  
A. Tas

The objective of this study was to investigate the effects of two parameters on mouse embryo development in vitro. These parameters were the effect of oocyte age on activation and the effect of O2 concentration in culture. In the first experiment, oocytes were recovered from superovutated mice at 15 h (group 1) or 20 h (group 2) after human chorionic gonadotropin (HCG) injection. All oocytes were activated for 6 h with 10 mM Sr2+ in Ca2+ free medium in the presence of 5 �g/mL of cytochalasin B. After activation, embryos were cultured in KSOM.aa medium for 4.5-5.5 days. Zygotes from naturally bred mice were used as control. Differences in blastocyst formation rate and blastocyst cell number among treatments were analyzed by one-way ANOVA after arcsin square transformation. In the first experiment, blastocyst formation rate in the first group was higher than in the second group (62.6% vs. 47.1%; P < 0.05). In addition, blastocyst cell number was also higher in the first group than in the second one (69.4 � 3.2 vs. 52.4 � 2.2; P < 0.05). However, both values were higher in control group (80%, 76.2 � 1.2; P < 0.05) than in the experimental groups. These results showed that young oocytes were activated more effectively than aged oocytes. In the second experiment, mouse zygotes were cultured in a humidified atmosphere of 5% CO2 in air (group 3) or 5% CO2, 5% O2, and 90% N2 (group 4). Blastocyst formation rate and blastocyst cell number of zygotes cultured in low O2 concentration (group 4) for 4.5 days were higher than for group 3 (76.3% vs. 56.4 and 69.0 � 3.4 vs. 52.8 � 2.3; P < 0.05). There was a significant difference in blastocyt formation rate of embryos for 5.5 days between the two groups (25.8% for group 4 vs. 14.4% for group 3; P < 0.05). This suggests that the embryos developed more slowly in high O2 concentration. These results showed that low O2 concentration provided a more suitable environment for mouse embryo development in vitro. The same experiment was repeated with parthenogenetic embryos recently in our laboratory. This study was supported by a grant from TUBITAK, Turkey (VHAG-1022).


2010 ◽  
Vol 22 (1) ◽  
pp. 303
Author(s):  
D. M. Paschoal ◽  
M. J. Sudano ◽  
L. C. O. Magalhães ◽  
L. F. Crocomo ◽  
F. C. Landim-Alvarenga

The increased storage of lipid granules in in vitro-produced (IVP) bovine embryos seems to be related to the presence and concentration of fetal calf serum (FCS) during culture. The presence of high concentration of lipids on embryos reduces their viability after cryopreservation, which has been one of the main obstacles for the success of vitrification of IVP bovine embryos (Moore et al. 2007 Theriogenology 68, 1316-1325). The present experiment aimed to induce cytoplasmic lipolysis in IVP bovine embryos using forskolin (Sigma-Aldrich, St. Louis, MO, USA), which raises the levels of intracellular cAMP (Seamon et al. 1981 Proc. Natl. Acad. Sci. USA, 78, 3363-3367). Nelore oocytes were matured in TCM-199 + 10% FCS, FSH, and LH in 5% CO2 in air atmosphere, at 38.5°C. After 24 h of maturation, oocytes were fertilized in human tubal fluid (HTF, Irvine, New Zealand) under the same conditions. Presumptive zygotes were cultured in 2 concentrations of FCS: Control 0% (SOFaa + 5 mg mL-1 BSA; basic medium, BM), and Control 2.5% (BM supplemented with 2.5% FCS). On Day 6 of culture embryos were divided into 2 additional treatments: Forskolin 0% (BM + 10 μM forskolin; and Forskolin 2.5% (BM supplemented with 2.5% FCS and 10 μM forskolin). All embryos were cultured in a 5% CO2, 5%O2, and 90% N2 atmosphere at 38.5°C for 7 days, when blastocyst formation rate was evaluated. Embryo viability was also checked by staining the embryos with Hoechst 33342 and propidium iodide. Data were analyzed by ANOVA followed by Tukey’s test, using a 5% significance level. No statistical differences were observed among treatments on cleavage rates, evaluated on Day 3 of culture, or on blastocyst formation rates. Although no statistical differences was observed between treatments on percentage of viable cells, embryos cultured with 0% FCS, independently of the presence of forskolin, presented significantly more damaged cells than embryos cultured with 2.5% FCS (P < 0.05). The results indicate that the presence of FCS is important to reduce degeneration of blastomeres during culture. Moreover, the presence of forskolin on Day 6 of culture did not influence embryo development, indicating that this drug could be a good alternative to reduce embryo lipid content in bovine IVP embryos produced in presence of FCS. Table 1.Effect of fetal calf serum and forskolin on embryo culture Acknowledgments: FAPESP 07/53505-1.


2007 ◽  
Vol 19 (1) ◽  
pp. 262
Author(s):  
W. Fujii ◽  
H. Funahashi

If diploid zygotes constituted with a somatic and a maternal genome could successfully develop to term, a new reproductive method would be developed to produce animals. However, there appears to be little information on this subject. In the present study, in vitro early development of the constituted zygotes was examined. A cumulus cell was microinjected into a rat non-enucleated oocyte, the reconstructed oocyte was chemically activated, and the pronuclear formation and in vitro development of the embryo was observed. Prepubertal Wistar female rats (21–27 days old) were induced to superovulate with an IP injection of 15 IU of eCG, followed by 15 IU of hCG 48 h later. Cumulus cells were removed from oocytes by pipetting with 0.1% hyaluronidase. Experiment 1: The DNA content of cumulus cells for microinjection was evaluated by flow cytometry. Experiment 2: The optimal concentration of SrCl2 for activation of rat oocytes was examined. Experiment 3: Cumulus cells were injected into mature oocytes in BSA-free HEPES-buffered mKRB containing 0.1% polyvinyl alcohol (PVA) and cytochalasin B (5 �g mL-1), and were then chemically activated by treatment in Ca2+-free mKRB containing 5 mM SrCl2 for 20 min at 0 to 0.5 (A), 1 to 1.5 (B), or 3 to 3.5 h (C) after injection. Activated embryos were cultured in droplets of mKRB in an atmosphere of 5% CO2 in air at 37�C for 9 to 12 h. After being observed for pronuclear formation, the embryos were transferred into mR1ECM-PVA, and the cleavage and blastocyst formation rates were examined 24 and 120 h later, respectively. Results from 3 to 7 replicates were analyzed by ANOVA and Duncan's multiple range test. A total of 90.0 and 9.5% of cumulus cells derived from ovulated oocyte–cumulus complexes contained 2C and 4C DNA contents, respectively. Survival rates did not differ among oocytes stimulated with 0 to 5 mM SrCl2 (96.7–100%) but did differ between those stimulated with 1.25 and 10 mM SrCl2 (100 and 72.9%, respectively). Activation rates of oocytes increased at higher SrCl2 concentrations and were higher at 5 and 10 mM (92.6 and 98.5%, respectively) than at other concentrations. When cumulus-injected oocytes were activated after various periods after the injection, the incidences of pronuclear formation and cleavage did not differ among the periods (A: 95.0 and 81.3%; B: 85.6 and 85.0%; and C: 82.7 and 84.6%, respectively). Although a majority of the embryos developed to the 2- to 4-cell stages (78.7%; 152/208), the blastocyst formation rate was very low (0.8%; 2/208). In conclusion, rat non-enucleated oocytes injected with a cumulus cell can form pronuclei and cleave following chemical activation, but blastocyst formation of the embryos is very limited.


2020 ◽  
Vol 32 (2) ◽  
pp. 159
Author(s):  
Y. Hashiyada ◽  
Y. Aikawa ◽  
H. Matsuda ◽  
T. Yamanouchi

Monozygotic twin embryos which can efficiently be produced by blastomere separation and aggregation of early cleavage stages of embryos using commercially provided well-of-the-well (WOW) culture dish. Phytohaemagglutinin (PHA) is a plant lectin that binds to and aggregates on the surface of animal cells, but also contains toxicity that causes food poisoning. The present study was conducted to evaluate the toxicity to embryos and the effect to development of isolated blastomeres on PHA-supplemented WOW culture. Embryos were produced using oocytes from ovaries collected at an abattoir by IVM, IVF, and invitro culture (IVC). The tissue culture medium 199 supplemented with 5% calf serum (CS), Brackett-Oliphant solution supplemented with 10mgmL−1 bovine serum albumin, and CR1aa medium containing 5% CS were used for each culture step. For the evaluation of PHA toxicity, 89 embryos that developed to the 5-8-cell stage were obtained at Day 2 after insemination. Each embryo was cultured in a droplet of 5 µL/embryo IVC culture medium supplemented with or without PHA. For the evaluation of PHA to development of isolated blastomeres, 111 of 8-cell stage embryos were obtained 48-54h post-insemination. Zonae pellucidae were removed by exposure to 0.25% pronase. Then, embryos were separated into single blastomeres by gentle pipetting in IVC medium. Each four blastomeres were formed in the shape of a bunch inside the thin cylinder at the tip of the Pasteur pipette by gentle pipetting. Then, each mass of blastomeres in each 60 masses was cultured individually in 5-µL droplets of IVC medium supplemented with or without PHA on the flat surface of a tissue culture dish. On the other hand, each four blastomeres were introduced into a single conical micro-well each having a diameter and depth of ~287µm and 168µm (Dai Nippon Printing). This culture of blastomeres was performed covered with a droplet of 2.5µL well−1 IVC medium supplemented with or without PHA in each 50 or 52 wells. In all of investigations, PHA was used at 50µgmL−1 (Akagi et al. 2011 J. Reprod. Dev. 57). Statistical analysis was performed using Student's t-test and analysis of variance. The blastocyst formation rate (71.1±2.3% vs. 72.7±1.7%), total cell number (120 vs. 122), and inner cell mass cell number (47 vs. 51) at Day 7 after IVF did not differ between PHA-supplemented and PHA-free group in the toxicity test, respectively. In the blastomere culture, the blastocyst formation rate was very low (10.0±5.9% vs. 5.0±2.9%) regardless of the PHA supplementation in drops on the flat surface of a tissue culture dish. On the other hand, blastocyst formation was improved using the WOW culture dish (24.0±3.6% vs. 40.4±7.6%) but there was no difference with or without PHA supplementation. Although nontoxicity of PHA and efficacy of WOW culture for isolated-aggregated blastomeres were confirmed, no improvement of PHA supplementation on development was observed in this study. Subsequently, experiments on the optimum concentration of PHA for aggregation and development of blastomeres in WOW culture are required.


2020 ◽  
Vol 32 (2) ◽  
pp. 133
Author(s):  
Z.-B. Luo ◽  
M.-F. Xuan ◽  
Z.-Y. Li ◽  
X.-J. Yin ◽  
J.-D. Kang

Accumulating evidence suggests that aberrant epigenetic reprogramming and low pluripotency of donor nuclei lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). In this study, we compared histone deacetylase inhibitors combined with the pluripotency inducer RepSox on invitro development of porcine embryos produced via SCNT. Porcine embryos were treated with valproic acid (VPA), mocetinostat, M344 and panobinostat (LBH589) after SCNT, respectively. The porcine embryo invitro-development competence, histone modification level, and pluripotency-related genes expression were analysed. The results showed that LBH589 significantly increased the blastocyst formation rate compared with mocetinostat, M344, and control. In addition, VPA treatment increased the blastocyst formation rate of SCNT porcine embryos; both VPA-treated and the untreated clones developed to term, but offspring from VPA-treated embryos had a lower survival to adulthood than those from control embryos (18.2 vs. 67.0%; P&lt;0.05). Furthermore, cotreatment with 12.5mM RepSox and 50 nM LBH589 (RepSox+LBH589) for 24h significantly increased the blastocyst formation rate compared with that of untreated embryos (26.9 vs. 8.5%, respectively; P&lt;0.05). Moreover, RepSox + LBH589 improved epigenetic reprogramming by histone acetylation and methylation. The expression of pluripotency-related genes NANOG and SOX2 was found to be significantly increased in the RepSox + LBH589 compared with control group at both the 4-cell and blastocyst stages. In particular, the expression of NANOG was 135-fold higher at the blastocyst stage in the RepSox + LBH589 group. In summary, RepSox + LBH589 increases the expression of developmentally important genes, optimises epigenetic reprogramming, and improves the invitro development of porcine SCNT embryos.


2017 ◽  
Vol 29 (1) ◽  
pp. 180
Author(s):  
T. Yamanouchi ◽  
S. Sugimura ◽  
H. Matsuda ◽  
M. Ohtake ◽  
Y. Goto ◽  
...  

Bovine oocytes obtained by ovum-pick-up (OPU) following follicle growth treatment (FGT) have improved quality and competence (Imai et al. 2008 Reprod. Fertil. Dev. 20, 182). However, the effect of the presence of FSH or epidermal growth factor (EGF) like peptide during in vitro maturation (IVM) on the developmental competence of FGT oocytes has not been well known. This study was undertaken to examine the developmental competence of FGT oocytes following IVM in the presence of FSH (recombinant human FSH) or EGF-like peptide (amphiregulin; Areg) and IVF. Japanese Black cows (n = 17) were used as donors. Five days after arbitrary OPU (opu group), follicles ≥8 mm in diameter were aspirated again, a controlled internal drug release (CIDR) was inserted into the vagina, and then pFSH was injected twice a day from the evening of Day 6 to the morning of Day 10 with decreasing doses (total of 20 AU; 4, 4, 3, 3, 2, 2, 1, 1 AU/day). On the evening of Day 8, PGF2α (0.5 mg of cloprostenol) was administered. On Day 11, oocytes were aspirated from follicles with ≥5 mm in diameter of the treated donors by OPU (fgt group). The cumulus-oocyte complexes (COC) were cultured in the absence (opu-cont and fgt-cont groups) or presence of 0.1 IU mL−1 FSH (opu-fsh and fgt-fsh groups) or 100 ng mL−1 Areg (opu-areg and fgt-areg groups) in IVM medium (mTCM199 containing 5 mg mL−1 BSA) for 20 to 22 h (1 COC/5 µL, total of 162–171 COC per group), and then co-cultured with 3 × 106 sperm/mL for 6 h. The presumptive zygotes were continued to culture in mCR1aa supplemented with 5% newborn calf serum for 216 h (1 zygote/5 µL) using micro-well culture dishes (Dai-Nippon-Print). When repeating this opu-fgt session in the same cow, an interval at least for 50 days was kept, and the session was performed 28 times. Statistical analysis was carried out by Mann-Whitney’s U-test (between opu and fgt groups) or Steel-Dwass test after Kruskal-Wallis test (among all groups). The number of follicles ≥5 mm increased in the fgt than opu group (17.8 v. 2.9; P < 0.01). The number of COC collected was not different between the opu and fgt groups (23.1 v. 19.6; P > 0.05). The blastocyst formation rate was higher in the fgt than opu group (36.9 v. 23.1%; P < 0.01). Within 6 groups, the blastocyst formation rate was higher in the fgt-fsh (43.3%; P < 0.01) and fgt-areg (39.5%; P < 0.05) groups than the opu-cont (16.3%) group. The rate in the fgt-fsh group was also higher than that in the opu-fsh group (43.3 v. 18.7%; P < 0.01). These results suggested that FGT improved the developmental competence of bovine oocytes, probably through improving the ability of the COC to react against FSH/Areg.


Sign in / Sign up

Export Citation Format

Share Document