Effect of Different Organic Manures and Garden Waste Compost on the Nitrate Dynamics in Soil, N Uptake and Yield of Winter Wheat

1995 ◽  
Vol 11 (1-4) ◽  
pp. 289-300 ◽  
Author(s):  
A. Berner ◽  
D. Scherrer ◽  
U. Niggli
1999 ◽  
Vol 9 (4) ◽  
pp. 598-600 ◽  
Author(s):  
Farbod Youssefi ◽  
Patrick H. Brown ◽  
Steve A. Weinbaum

It has been proposed that a pool of amino N, whose size is determined by aboveground N demand, cycles in the plant and regulates soil N uptake by exerting an inhibitory effect at the root level. Several experiments were carried out to study this hypothesis in almond trees [Prunus dulcis (Mill.) D.A. Webb]. Based on the evidence found, there is an association, at the whole tree level, between sap N content and soil N uptake. The data are consistent with the possibility that increased phloem sap amino acids result in decreased uptake of soil N.


1994 ◽  
Vol 74 (4) ◽  
pp. 443-451 ◽  
Author(s):  
A. A. Bomke ◽  
W. D. Temple ◽  
S. Yu

Winter wheat, Triticum aestivum, is a new crop in south coastal British Columbia. The purposes of this study were to characterize plant development, dry matter accumulation and N uptake under low input and intensively managed systems as well as to assess the capability of some of the region’s soils to supply N to the crop. Grain yields, crop development and dry matter and N accumulation were similar to those reported from southern England. High amounts of winter rainfall (November–April precipitation ranged from 523 to 1111 mm) leach virtually all residual NO3 from south coastal B.C. soils and, without N fertilization, result in uniformly N deficient winter wheat. The low input N regime, 75 kg N ha−1 at Zadoks growth stage 31, plus soil N mineralized subsequent to the winter leaching period were sufficient in this study to maximize grain and total aboveground crop dry matter yields, but not to achieve adequate grain protein contents. The soils in the study were capable of supplying N in amounts sufficient to support only 30–53% of the maximum N uptake between growth stages 31 and 78. Appropriate quantities and timing of N are critical to successful production of high-yielding, good-quality wheat in south coastal British Columbia. Nitrogen management is likely to be most efficient when guided by the stage of crop development and demand and not by spring soil sampling and mineral N analysis. Key words: Winter wheat, N demand, soil N supply, crop development, intensive crop management, low input


2001 ◽  
Vol 136 (1) ◽  
pp. 15-33 ◽  
Author(s):  
R. SYLVESTER-BRADLEY ◽  
D. T. STOKES ◽  
R. K. SCOTT

Experiments at three sites in 1993, six sites in 1994 and eight sites in 1995, mostly after oilseed rape, tested effects of previous fertilizer N (differing by 200 kg/ha for 1993 and 1994 and 300 kg/ha for 1995) and date of sowing (differing by about 2 months) on soil mineral N and N uptake by winter wheat cv. Mercia which received no fertilizer N. Soil mineral N to 90 cm plus crop N (‘soil N supply’; SNS) in February was 103 and 76 kg/ha after large and small amounts of previous fertilizer N respectively but was not affected by date of sowing. Previous fertilizer N seldom affected crop N in spring because sowing was too late for N capture during autumn, but it did affect soil mineral N, particularly in the 60–90 cm soil horizon, presumably due to over-winter leaching. Tillering generally occurred in spring, and was delayed but not diminished by later sowing. Previous fertilizer N increased shoot survival more than it increased shoot production. Final shoot number was affected by previous fertilizer N, but not by date of sowing. Overall, there were 29 surviving tillers/g SNS.N uptakes at fortnightly intervals from spring to harvest at two core sites were described well by linear rates. The difference between sowings in the fitted date with 10 kg/ha crop N was 1 month; these dates were not significantly affected by previous fertilizer. N uptake rates were increased by both previous fertilizer N and late sowing. Rates of N uptake related closely to soil mineral N in February such that ‘equivalent recovery’ was achieved in late May or early June. At one site there was evidence that most of the residue from previous fertilizer N had moved below 90 cm by February, but N uptake was nevertheless increased. Two further ‘satellite’ sites behaved similarly. Thus at 14 out of 17 sites, N uptake until harvest related directly and with approximate parity to soil mineral N in February (R2 = 0·79), a significant intercept being in keeping with an atmospheric contribution of 20–40 kg/ha N at all sites.It is concluded that, on retentive soils in the UK, SNS in early spring was a good indicator of N availability throughout growth of unfertilized wheat, because the N residues arising from previous fertilizer mineralized before analysis, yet remained largely within root range. The steady rates of soil mineral N recovery were taken as being dependent on progressively deeper root development. Thus, even if soil mineral N equated with a crop's N requirement, fresh fertilizer applications might be needed before ‘equivalent recovery’ of soil N, to encourage the earlier processes of tiller production and canopy expansion. The later process of grain filling was sustained by continued N uptake (mean 41 kg/ha) coming apparently from N leached to the subsoil (relating to previous fertilizer use) as well as from sources not related to previous fertilizer use; significant net mineralization was apparent in some subsoils.


1990 ◽  
Vol 70 (2) ◽  
pp. 461-472 ◽  
Author(s):  
B. A. DARROCH ◽  
D. B. FOWLER

Norstar winter wheat (Triticum aestivum L.) was examined in 11 trials with the objective of determining the pattern of dry matter and nitrogen (N) accumulation in dryland stubbled-in winter wheat grown in Saskatchewan. In all 4 yr of this study, replicated no-till field trials were supplemented with 0, 34, 67 and 100 kg N ha−1 applied as ammonium nitrate (34-0-0) in early spring. A fifth treatment of 200 kg N ha−1 was evaluated in the final year of trials. Plant samples were collected at 2-wk intervals. Early season N uptake was more rapid than dry matter accumulation and 89% of the total N, compared to 70% of the total dry matter, was present at anthesis (Zadoks growth stages 60–68). Poor soil moisture availability limited N uptake after anthesis. Consequently, N uptake during the growing season was best described by a quadratic equation, Nitrogen yield = −29.1 + 3.02 Z − 0.018 Z2, where Z represents the Zadoks growth stage. Nitrogen concentrations of the stems and leaves decreased during the growing season while the N concentration of spikes varied among trials. Nitrogen fertilization often produced large increases in tissue N concentration at the beginning of the growing season. These differences decreased with time and by the end of the season tissue N concentrations were usually similar for all N rates. In general, when residual soil N levels were low to intermediate and rainfall was adequate, N fertilization increased dry matter yield, plant N yield, grain yield and grain protein yield. Nitrogen fertilization increased plant N concentration, plant N yield, grain protein concentration and grain protein yield when soil N reserves were intermediate to high and rainfall was adequate.Key words: Nitrogen uptake, wheat (winter), nitrogen response, tissue nitrogen, grain protein, environment


2021 ◽  
Vol 3 ◽  
Author(s):  
Simon J. Habinshuti ◽  
Sipho T. Maseko ◽  
Felix D. Dakora

Inhibition of N2 fixation in N-fertilized common bean (Phaseolus vulgaris L.) plants growing on the fields of farmers in the Eastern Cape of South Africa was measured using 15N natural abundance and tissue ureide analysis. The N-fertilized bean plants revealed greater soil N uptake, higher concentrations of nitrate in organs, low tissue ureide levels, and much lower percent relative ureide-N abundance when compared with unfertilized plants. In contrast, the unfertilized plants showed greater nodule fresh weight, higher N derived from fixation (e.g., 84.6, 90.4, and 97.1% at Lujecweni fields 2, 3, and 4, respectively), increased amount of N-fixed (e.g., 163.3, 161.3, and 140.3 kg ha−1 at Lujecweni fields 2, 3, and 4, respectively), greater ureide concentration in stems and petioles, higher % relative ureide-N abundance, and low soil N uptake. We also found that the percent N derived from fixation (%Ndfa) was very high for some bean plants receiving a double dose of N fertilizer [e.g., Lujecweni field 1 (51.8%) and Tikitiki field 1 (53.3%], and quite high for others receiving a single dose of N fertilizer [e.g., Tikitiki field 2 (50.1%), Mfabantu fields 1 and 2 (45.5 and 79.9%, respectively), and St. Luthberts field 1 (58.9%)]. Though not assessed in this study, it is likely that the rhizobia that effectively nodulated the N-fertilized bean plants and fixed considerable amounts of symbiotic N had constitutive and/or inducible nitrate reductase genes for reducing nitrate in nodules and bacteroids, hence their ability to form root nodules and derived high %Ndfa in bean with added N. While single- and double-dose N fertilizer applications increased plant growth and grain yield compared to unfertilized bean plants, the single-dose N fertilizer application produced much greater grain yield than the double dose. This indicates that farmers should stop using a double dose of N fertilizers on bean production, as it decreases yields and can potentially pollute the environment. This study has however shown that government supply of free N fertilizers to resource-poor farmers in South Africa increased bean yields for food/nutritional security.


2016 ◽  
Author(s):  
Stephane Bazot ◽  
Chantal Fresneau ◽  
Claire Damesin ◽  
Laure Barthes

Abstract. The origin of the N which contributes to the synthesis of N reserves of in situ forest trees in autumn, and to the growth of new organs the following spring, is currently poorly documented. To characterize the metabolism of various possible N sources (plant N and soil N), six distinct 20 year-old sessile oaks were 15N labelled by spraying 15NH415NO3: (i) on leaves in May, to label the N pool remobilized in the autumn for synthesis of reserves; (ii) on soil in the autumn, to label the N pool taken up from soil; (iii) on soil at the beginning of the following spring, to label the N pool taken up from soil in the spring. The partitioning of 15N in leaves, twigs, phloem, xylem, fine roots, rhizospheric soil and microbial biomass was followed during two growing seasons. Results showed a significant incorporation of 15N in the soil-tree system; more than 30 % of the administered 15N was recovered. Analysis of the partitioning clearly revealed that in autumn, roots’ N reserves were formed from foliage 15N (73 %) and to a lesser extent from soil 15N (27 %). The following spring, 15N used for the synthesis of new leaves came first from 15N stored during the previous autumn, mainly from 15N reserves formed from foliage (95 %). Thereafter, when leaves were fully expanded, 15N uptake from soil during the previous autumn and before budburst contributed to the formation of new leaves (60 %).


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 553C-553
Author(s):  
Paula B. Aguirre ◽  
Teryl R. Roper ◽  
Armand R. Krueger

The uptake efficiency of apple scions and rootstocks has not been studied in the field. Using 15N (ammonium nitrate, 1 atom % 15N) we compared nitrogen uptake efficiency of 12 rootstocks grafted to one scion (Gala) and of 20 scions on the same clonal rootstock (M.9 EMLA) in orchards located in northeastern Wisconsin. Trees were treated in either Fall or Spring 1998 with 40 g actual N per tree applied as a liquid to the soil. N uptake was assessed by measuring 15N in leaf and wood tissue taken monthly from June to Oct. 1998. Tissues were oven-dried and analized using a ratio mass spectrometer. Treatment differences were greater among scions with the same rootstocks than among rootstocks with the same scion. Total N and 15N content differences were found between roostocks and these values were inversely related to tree size.


1983 ◽  
Vol 100 (2) ◽  
pp. 461-471 ◽  
Author(s):  
M. H. Leitch ◽  
L. V. Vaidyanathan

SummarysLabelled fertilizer N (15N depleted ammonium sulphate) was used to investigate both soil and fertilizer N use by winter wheat established in contrasting seed beds, these being soil cultivated to 20 cm depth or left undisturbed. The crop's response to, and recovery of, a range of N levels from 0 to 280 kg/ha given as a divided application in spring, were measured over two seasons. It was found that during the first season the direct-drilled wheat took up, on average, more fertilizer N but less soil N than wheat in cultivated soil, probably through differences in organic-matter mineralization. The different cultivation systems produced similar grain yields at all rates of applied N; however, when no fertilizer N was given, dry-matter production and soil-N uptake by the crop in the undisturbed soil were substantially less than by the crop in the cultivated soil. Crop recovery of the fertilizer N at harvest was between 29 and 40% of that given. After harvest, an average of one third of the applied fertilizer N was found in the top 60 cm of the soil profile. In the following season on the same plots a second winter wheat crop, receiving no fertilizer N, was drilled. At harvest there was shown to be an increase in grain yield and soil- and fertilizer-N uptake at the higher srates of N given in the previous season. In spite of this the recovery of the labelled residues was small, no more than 6% of the original application, or 15% of the residues remaining in the soil, irrespective of cultivation system.


2016 ◽  
Vol 13 (11) ◽  
pp. 3475-3484 ◽  
Author(s):  
Stephane Bazot ◽  
Chantal Fresneau ◽  
Claire Damesin ◽  
Laure Barthes

Abstract. The origin of N which contributes to the synthesis of N reserves of in situ forest trees in autumn and to the growth of new organs the following spring is currently poorly documented. To characterize the metabolism of various possible N sources (plant N and soil N), six distinct 20-year-old sessile oaks were 15N labelled by spraying 15NH415NO3: (i) on leaves in May, to label the N pool remobilized in the autumn for synthesis of reserves, (ii) on soil in the autumn, to label the N pool taken up from soil and (iii) on soil at the beginning of the following spring, to label the N pool taken up from soil in the spring. The partitioning of 15N in leaves, twigs, phloem, xylem, fine roots, rhizospheric soil and microbial biomass was followed during two growing seasons. Results showed a significant incorporation of 15N into the soil–tree system; more than 30 % of the administered 15N was recovered. Analysis of the partitioning clearly revealed that in autumn, roots' N reserves were formed from foliage 15N (73 %) and to a lesser extent from soil 15N (27 %). The following spring, 15N used for the synthesis of new leaves came first from 15N stored during the previous autumn, mainly from 15N reserves formed from foliage (95 %). Thereafter, when leaves were fully expanded, 15N uptake from the soil during the previous autumn and before budburst contributed to the formation of new leaves (60 %).


Sign in / Sign up

Export Citation Format

Share Document