DRY MATTER PRODUCTION AND NITROGEN ACCUMULATION IN NO-TILL WINTER WHEAT

1990 ◽  
Vol 70 (2) ◽  
pp. 461-472 ◽  
Author(s):  
B. A. DARROCH ◽  
D. B. FOWLER

Norstar winter wheat (Triticum aestivum L.) was examined in 11 trials with the objective of determining the pattern of dry matter and nitrogen (N) accumulation in dryland stubbled-in winter wheat grown in Saskatchewan. In all 4 yr of this study, replicated no-till field trials were supplemented with 0, 34, 67 and 100 kg N ha−1 applied as ammonium nitrate (34-0-0) in early spring. A fifth treatment of 200 kg N ha−1 was evaluated in the final year of trials. Plant samples were collected at 2-wk intervals. Early season N uptake was more rapid than dry matter accumulation and 89% of the total N, compared to 70% of the total dry matter, was present at anthesis (Zadoks growth stages 60–68). Poor soil moisture availability limited N uptake after anthesis. Consequently, N uptake during the growing season was best described by a quadratic equation, Nitrogen yield = −29.1 + 3.02 Z − 0.018 Z2, where Z represents the Zadoks growth stage. Nitrogen concentrations of the stems and leaves decreased during the growing season while the N concentration of spikes varied among trials. Nitrogen fertilization often produced large increases in tissue N concentration at the beginning of the growing season. These differences decreased with time and by the end of the season tissue N concentrations were usually similar for all N rates. In general, when residual soil N levels were low to intermediate and rainfall was adequate, N fertilization increased dry matter yield, plant N yield, grain yield and grain protein yield. Nitrogen fertilization increased plant N concentration, plant N yield, grain protein concentration and grain protein yield when soil N reserves were intermediate to high and rainfall was adequate.Key words: Nitrogen uptake, wheat (winter), nitrogen response, tissue nitrogen, grain protein, environment

1994 ◽  
Vol 74 (4) ◽  
pp. 443-451 ◽  
Author(s):  
A. A. Bomke ◽  
W. D. Temple ◽  
S. Yu

Winter wheat, Triticum aestivum, is a new crop in south coastal British Columbia. The purposes of this study were to characterize plant development, dry matter accumulation and N uptake under low input and intensively managed systems as well as to assess the capability of some of the region’s soils to supply N to the crop. Grain yields, crop development and dry matter and N accumulation were similar to those reported from southern England. High amounts of winter rainfall (November–April precipitation ranged from 523 to 1111 mm) leach virtually all residual NO3 from south coastal B.C. soils and, without N fertilization, result in uniformly N deficient winter wheat. The low input N regime, 75 kg N ha−1 at Zadoks growth stage 31, plus soil N mineralized subsequent to the winter leaching period were sufficient in this study to maximize grain and total aboveground crop dry matter yields, but not to achieve adequate grain protein contents. The soils in the study were capable of supplying N in amounts sufficient to support only 30–53% of the maximum N uptake between growth stages 31 and 78. Appropriate quantities and timing of N are critical to successful production of high-yielding, good-quality wheat in south coastal British Columbia. Nitrogen management is likely to be most efficient when guided by the stage of crop development and demand and not by spring soil sampling and mineral N analysis. Key words: Winter wheat, N demand, soil N supply, crop development, intensive crop management, low input


1998 ◽  
Vol 49 (3) ◽  
pp. 487 ◽  
Author(s):  
W. J. McGhie ◽  
D. P. Heenan ◽  
D. Collins

Soil nitrogen (N), N uptake, and wheat production in relation to rotation with wheat, lupin,or subterranean clover, mulched or grazed, were examined on a red earth at Wagga Wagga, New South Wales. Data over 4 years (1992{95) are presented from a long-term trial commenced in 1979. The effects of the various rotations on wheat productivity changed with seasonal rainfall duringthe wheat and the previous legume growing year. Generally, low rainfall (1991 and 1994) during thelegume growing season resulted in lower N uptake, grain protein, and grain yield by wheat grown ina following season. The addition of N fertiliser (100 kg N/ha) to continuous wheat increased soil N supply, N uptake, grain yield, and grain protein. Yields from continuously cropped wheat fertilisedwith N were usually lower than those after a lupin growing season, although total soil N levels weresimilar. Subterranean clover produced higher total soil N and grain protein than lupin but yields werenormally less. Lodging and take-all diseases were higher after a growing season with subterraneanclover than after lupins and most likely reduced grain yields. Grazing, as opposed to mowing andmulching subterranean clover, increased soil total N, grain protein, and usually soil mineral N, butnot grain yield. The addition of lime at 1·5 t/ha raised the soil pH(CaCl2) (0-10 cm) of the mostacidified treatment, continuously cropped wheat fertilised with N, from 4·04 to a mean of 4·7, andincreased yields and N uptake in 1993 and 1995.


1991 ◽  
Vol 71 (4) ◽  
pp. 519-532 ◽  
Author(s):  
T. Sen Tran ◽  
M. Giroux

The efficiency of 15N-labelled fertilizer on early harvested potaotes (Solanum tuberosum L., 'Norland') was studied in field experiments on two soil series (Saint-Damase loamy sand and Soulanges sandy loam) during a 2-yr period. The 15NH415NO3 fertilizer was band applied at 0 and 140 kg N ha−1 in 1985 and 0, 70, 140 kg ha−1 in 1986 and four harvests were made during the growing season. The foliage was in full canopy development at 65 or 75 d and its dry matter yield increased significantly with the application of fertilizer-N. At this time about 70% of the total N uptake was in the foliage. From this peak, foliage N decreased gradually with time to about 28% at 95 or 100 d as N was transferred to the tubers. The N concentration in tubers was nearly constant during the growing season. As tuber dry matter increased at each successive harvest, N uptake increased proportionally. Between the first two harvest dates, from 65 to 75 d, the average rates of N accumulation in tubers were 2.1 and 4.5 kg N ha−1 d−1 for the control and N fertilized plot, respectively. The root dry matter and N concentration increased with fertilizer-N and were generally lowest on the final harvest day. Marketable tuber yield responded to N fertilization on the severely N-deficient fields in 1985. But in 1986, the 140 kg N ha−1 treatment delayed the growth of marketable tubers. The percentage of N derived from fertilizer (Ndff) was also very high in 1985 fields and was at a maximum at 65 d (64–69%) with the 140 kg N ha−1 treatment. These values were lower for the same treatments in 1986 fields (39%) because of the larger amounts of available N in soils. The maximum coefficient of utilization (ICU) of labelled fertilizer N was 72–76% in 1985 and 63–68% in 1986. At the final harvest, about 36–50% of the applied fertilizer-N was found in the tubers. Key words: Nitrogen fertilization, 15N-labelled fertilizer, N use efficiency, harvest periods, potato


1989 ◽  
Vol 69 (2) ◽  
pp. 367-375 ◽  
Author(s):  
M. H. ENTZ ◽  
D. B. FOWLER

The influence of crop water environment on the productivity of no-till winter wheat (Triticum aestivum L. ’Norstar’) was observed for 17 site-years of trials in Saskatchewan between 1984 and 1986. Growing season precipitation (P) averaged 212 mm (approximately 120% of average) and pan evaporation (E) averaged 749 mm for these trials. Precipitation was approximately evenly distributed across the growing season while E increased from a low of 6.5 mm d−1 in early May to a high of 8.3 mm d−1 immediately after anthesis. Consequently, water stress was highest after anthesis. Total evapotranspiration (ET) (soil water use to 130 cm plus growing season P) ranged from 171 to 364 mm and approximately 20% of the ET was derived from soil water reserves. The average ratio of ET before and after anthesis was 1:7:1 and in many instances water utilized after anthesis was almost exclusively derived from intermittent rainfall events. Several yield-water models were fit to the data in order to establish a relationship between the crop water environment and grain yield. Yields ranged from 1316 to 5003 kg ha−1 and were most closely associated with the water environment (soil water, E and P) during the time from stem elongation to anthesis (r2 = 0.71). Water use efficiency, expressed as kg ha−1 grain yield divided by ET, ranged from 6.3 to 18.8 kg ha−1 mm−1 and was positively correlated with spikes m−2 (r = 0.59*), kernel weight (r = 0.73**), dry matter at anthesis (r = 0.84**), and negatively correlated with E during the 30 days prior to anthesis (r = 0.75**). Both dry matter at anthesis and dry matter at maturity were linearly correlated with grain yield (r = 0.85** and 0.92**, respectively). Both observations suggested that high grain yields required high dry matter yields.Key words: Wheat (winter), precipitation, evaporation, soil water, water use efficiency, models


2021 ◽  
Vol 13 (10) ◽  
pp. 5649
Author(s):  
Giovani Preza-Fontes ◽  
Junming Wang ◽  
Muhammad Umar ◽  
Meilan Qi ◽  
Kamaljit Banger ◽  
...  

Freshwater nitrogen (N) pollution is a significant sustainability concern in agriculture. In the U.S. Midwest, large precipitation events during winter and spring are a major driver of N losses. Uncertainty about the fate of applied N early in the growing season can prompt farmers to make additional N applications, increasing the risk of environmental N losses. New tools are needed to provide real-time estimates of soil inorganic N status for corn (Zea mays L.) production, especially considering projected increases in precipitation and N losses due to climate change. In this study, we describe the initial stages of developing an online tool for tracking soil N, which included, (i) implementing a network of field trials to monitor changes in soil N concentration during the winter and early growing season, (ii) calibrating and validating a process-based model for soil and crop N cycling, and (iii) developing a user-friendly and publicly available online decision support tool that could potentially assist N fertilizer management. The online tool can estimate real-time soil N availability by simulating corn growth, crop N uptake, soil organic matter mineralization, and N losses from assimilated soil data (from USDA gSSURGO soil database), hourly weather data (from National Weather Service Real-Time Mesoscale Analysis), and user-entered crop management information that is readily available for farmers. The assimilated data have a resolution of 2.5 km. Given limitations in prediction accuracy, however, we acknowledge that further work is needed to improve model performance, which is also critical for enabling adoption by potential users, such as agricultural producers, fertilizer industry, and researchers. We discuss the strengths and limitations of attempting to provide rapid and cost-effective estimates of soil N availability to support in-season N management decisions, specifically related to the need for supplemental N application. If barriers to adoption are overcome to facilitate broader use by farmers, such tools could balance the need for ensuring sufficient soil N supply while decreasing the risk of N losses, and helping increase N use efficiency, reduce pollution, and increase profits.


2017 ◽  
Vol 30 (3) ◽  
pp. 670-678 ◽  
Author(s):  
ROGÉRIO PERES SORATTO ◽  
TIAGO ARANDA CATUCHI ◽  
EMERSON DE FREITAS CORDOVA DE SOUZA ◽  
JADER LUIS NANTES GARCIA

ABSTRACT The objective of this work was to evaluate the effect of plant densities and sidedressed nitrogen (N) rates on nutrition and productive performance of the common bean cultivars IPR 139 and Pérola. For each cultivar, a randomized complete block experimental design was used in a split-plot arrangement, with three replicates. Plots consisted of three plant densities (5, 7, and 9 plants ha-1) and subplots of five N rates (0, 30, 60, 120, and 180 kg ha-1). Aboveground dry matter, leaf macro- and micronutrient concentrations, yield components, grain yield, and protein concentration in grains were evaluated. Lower plant densities (5 and 7 plants m-1) increased aboveground dry matter production and the number of pods per plant and did not reduce grain yield. In the absence of N fertilization, reduction of plant density decreased N concentration in common bean leaves. Nitrogen fertilization linearly increased dry matter and leaf N concentration, mainly at lower plant densities. Regardless of plant density, the N supply linearly increased grain yield of cultivars IPR 139 and Pérola by 17.3 and 52.2%, respectively.


2019 ◽  
Vol 47 (4) ◽  
pp. 1116-1127
Author(s):  
Christos A. DORDAS ◽  
Anastasios S. LITHOURGIDIS ◽  
Kalliopi GALANOPOULOU

Intercropping is the cultivation of two or more crop species on the same area of land, and can improve yield, forage quality, and soil health. Despite the fact that intercropping is an old practice, it received significant attention the last years because of the environmental impact that it has. However, the effect of the various spatial arrangements of the different species that are used in an intercropping system was not determined. The objective of the present study was to study the yield, growth and nitrogen (N) uptake rate, N nutrition index (NNI) of barley, interspecific competition, quality and financial outcome of intercrops of faba bean (Vicia faba L. var. equina) and barley (Hordeum vulgare L.) with various spatial arrangements (1:1, 2:2, 2:1 alternate rows, and mixed in the same row). The land equivalent ratio (LER), relative crowding coefficient (K), actual yield loss (AYL) and system productivity index (SPI) values were greater for the FB:B intercrop of 2:1, indicating the advantage of intercropping in terms of dry matter and N yield. Sole cropping of barley showed a reduction in NNI by 7 %, whereas NNI for barley increased by an average of 14% in intercropping treatments. Based on biomass production and the competition indices for dry matter and N yield, and NNI the FB:B intercrop of 2:1 was more advantageous than faba bean and barley monocrops, as well as the other intercropping treatments that were tested.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


Agronomy ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 38 ◽  
Author(s):  
Julien Verzeaux ◽  
David Roger ◽  
Jérôme Lacoux ◽  
Elodie Nivelle ◽  
Clément Adam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document