Evolution of Microscopic Morphology and Surface Features of Cornstalk Torrefied with/without O2 Involving

2021 ◽  
pp. 1-9
Author(s):  
Qicheng Chen ◽  
Wei Han ◽  
Qiaomu Zhang ◽  
Weishan Liu ◽  
Nanhang Dong
1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


2012 ◽  
Author(s):  
Kent D. Bodily ◽  
Zachary A. Kilday ◽  
Caroline K. Eastman ◽  
Katherine A. Gaskin ◽  
April Graves ◽  
...  

2020 ◽  
Vol 13 (6) ◽  
pp. 697-706
Author(s):  
Yuhong Wang ◽  
Kecheng Zhao ◽  
Fangjin Li ◽  
Qi Gao ◽  
King Wai Chiu Lai

AbstractThe microscopic surface features of asphalt binders are extensively reported in existing literature, but relatively fewer studies are performed on the morphology of asphaltene microstructures and cross-examination between the surface features and asphaltenes. This paper reports the findings of investigating six types of asphalt binders at the nanoscale, assisted with atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM). The surface features of the asphalt binders were examined by using AFM before and after being repetitively peeled by a tape. Variations in infrared (IR) absorbance at the wavenumber around 1700 cm−1, which corresponds to ketones, were examined by using an infrared s-SNOM instrument (scattering-type scanning near-field optical microscope). Thin films of asphalt binders were examined by using STEM, and separate asphaltene particles were cross-examined by using both STEM and AFM. In addition, connections between the microstructures and binder’s physicochemical properties were evaluated. The use of both microscopy techniques provide comprehensive and complementary information on the microscopic nature of asphalt binders. It was found that the dynamic viscosities of asphalt binders are predominantly determined by the zero shear viscosity of the corresponding maltenes and asphaltene content. Limited samples also suggest that the unique bee structures are likely related to the growth of asphaltene content during asphalt binder aging process, but more asphalt binders from different crude sources are needed to verify this finding.


2011 ◽  
Vol 306-307 ◽  
pp. 274-279
Author(s):  
Qing Tao ◽  
Yan Wei Sui ◽  
Sun Zhi ◽  
Wei Song

AlN and TiN thin films are widely used in electronic devices and acoustic material and other fields because of its unique merit, the preparation of nitride thin films by using the arc ion plating has not been a systematic and deep study. The article presents our research procedure which the AlN and TiN thin films are deposited on stainless steel substrate by arc ion plating (AIP). The characteristics of thin films, for example microstructure, morphology, composition analysis and hardness, are examined and analyzed. The results showed that: Droplet-like particles appear in the microstructure of nitride thin films, and the grain size of droplet-like particles in AlN thin films is greater than in TiN thin films. The micro-hardness of nitride films preparation in experiment has improved significantly, and establish firmly basic for extending the application field of nitride film.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 179
Author(s):  
Seongmin Yang ◽  
Seungyeob Han ◽  
Yeo-Myeong Yun ◽  
Seoktae Kang

The production of biogas was promoted via direct interspecies electron transfer (DIET) by employing electro-conductive carbon-nanotube hollow-fiber media (CHM) in anaerobic digestion. Experimental results showed a positive effect of CHM presence on CH4 productivity with 34% higher CH4 production rate than that of in the presence of non-electroconductive polymeric hollow fiber media. An increased CH4 production rate was due to the shift in the microbiome with more abundant Pelobacter (10.0%), Geobacter (6.9%), and Methanosaeta (15.7%), which play key roles in promoting CH4 production via syntrophic metabolism associated with DIET. Microscopic morphology analysis, using confocal laser scanning microscopy and scanning electron microscopy, exhibited that several living cells were attached with electro-conductive pili on the CHM surface, thereby facilitated electron transport between microbial cells.


Sign in / Sign up

Export Citation Format

Share Document