Using the Biocarbonization of Reactive Magnesia to Cure Electrolytic Manganese Residue

2021 ◽  
pp. 1-10
Author(s):  
Zhe Chen ◽  
Xiangwei Fang ◽  
Kaiquan Long ◽  
Chunni Shen ◽  
Yang Yang ◽  
...  
2019 ◽  
Vol 228 ◽  
pp. 901-909 ◽  
Author(s):  
Ying Lv ◽  
Jia Li ◽  
Hengpeng Ye ◽  
Dongyun Du ◽  
Jiaxin Li ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2133 ◽  
Author(s):  
Xuli Li ◽  
Yue Zeng ◽  
Fangyuan Chen ◽  
Teng Wang ◽  
Yixin Li ◽  
...  

Zeolite analcime (EMANA) was synthesized through the hydrothermal method by using carbothermal reduction electrolytic manganese residue (CR-EMR). The structural properties of EMANA and CR-EMR were studied using various characterization techniques. After hydrothermal synthesis, the CR-EMR became super-microporous, and the surface area increased by 4.76 times than before. Among the various synthesized zeolites, 6 h-synthesized EMANA was selected as the best adsorbent for macrolide antibiotics in aqueous solution. The adsorption performance of EMANA on the adsorption capacity was examined by using various experimental parameters, such as contact time (0–24 h), initial concentration (50–300 mg/L), temperature (30–50 °C) and pH (3–13). The experimental results were also analyzed by the Langmuir and Freundlich adsorption models, with the latter obtaining better representation. The adsorption process could be described well by the pseudo-second-order model, even under a low concentration (50 mg/L). This result suggests that the adsorption process of macrolide antibiotics is due to chemisorption. According to the Fourier Transform infrared spectroscopy (FT-IR) results, the adsorption of zeolite was mainly due to its hydroxyl group, which played an important role during the adsorption process. Moreover, EMANA is more suitable for treatment of roxithromycin (ROX) than azithromycin (AZM), because ROX has more adsorption sites for the hydroxyl group.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Changxin Li ◽  
Yuan Yu ◽  
Qingwu Zhang ◽  
Hong Zhong ◽  
Shuai Wang

In this study, the cation exchange capacity (CEC); phosphate immobilization capacity (PIC); and chemical, mineralogical, and morphological characteristics of the synthesized electrolytic manganese residue (EMR) based zeolite (EMRZ) were systematically investigated during the synthesis process. By varying synthesis conditions, different zeolites with different purity were generated, and it was proven that a lower Si/Al ratio, relatively higher temperature, and relatively longer time favored the synthesis of zeolite. Besides, the decrease in Si/Al ratio and variation within a narrow range contributed to the forming of Al rich zeolite. Meanwhile, the discrepancy of CEC and PIC of EMRZ contributed to the case in which various elements in EMRZ do have an impact on CEC (Na2O element and type of zeolite) and PIC (calcium and iron components). Moreover, the synthesis conditions were optimized and evaluated in terms of their CEC, specific surface area (SSA), and crystallinity. According to the analyses using XRD, FE-SEM, and XRF and the SSA analysis, the EMRZ (mainly zeolite A, LTA) synthesized under the optimum conditions (initial Si/Al ratio of 1.5, at 100°C, for 1.5 h) was found to be mainly composed of highly ordered cubic zeolites A crystals with a Si/Al ratio of 1.02 and a CEC of 3.45 meq/g.


Sign in / Sign up

Export Citation Format

Share Document