Nonlinear planar secondary resonance analyses of suspended cables with thermal effects

2019 ◽  
Vol 42 (12) ◽  
pp. 1515-1534 ◽  
Author(s):  
Yaobing Zhao ◽  
Chaohui Huang ◽  
Lincong Chen
2021 ◽  
Vol 31 (10) ◽  
pp. 2150153
Author(s):  
Yaobing Zhao ◽  
Henghui Lin

The temperature change is a non-negligible factor in examining the vibration behaviors of the cable structures. For this reason, the paper aims at investigating the thermal effects on suspended cables’ resonant responses considering two-to-one internal resonances. Firstly, a nonlinear continuous condensed model of the suspended cable under periodic excitation in thermal environments is adopted. Then, a multidimensional discretized model is constructed via the Galerkin method. Following the multiple scaling procedure, the modulation equations with both polar and Cartesian forms are obtained, which are solved numerically. A complete dynamic scenario is presented through bifurcation diagrams, phase portraits, time history curves, Fourier spectra, and Poincaré sections in three internal resonant cases. Numerical examples show that a small change in the static configuration due to thermal effects induces some noticeable changes in dynamic behaviors. The response amplitude, the nonlinear spring behavior, the resonant and stability region, the multi-periodic and chaotic motions are all dependent on temperature changes. Additional Hopf bifurcations might be found due to temperature changes, and it may lead to some more complicated dynamic characteristics. A good agreement between the perturbation and numerical solutions is observed to confirm the results’ correctness and accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yaobing Zhao ◽  
Panpan Zheng ◽  
Henghui Lin ◽  
Chaohui Huang

The paper aims at studying the influences of temperature on the suspended cables’ dynamical behaviors subjected to dual harmonic excitations in thermal environments. Significantly, the quadratic nonlinearity and the corresponding secondary resonances are considered. By introducing a tension variation factor, the nonlinear vibration equations of motion could be obtained based on the condensation model. By using Galerkin’s procedure, the continuous model of the nonlinear system is reduced to a set of infinite models with quadratic and cubic nonlinearities. By using the multiple scales method, the resultant reduced model is solved and the stability analysis is also presented in two simultaneous resonance cases. Nonlinear dynamical behaviors with thermal effects are presented using bifurcation diagrams, time-history curves, phase portraits, frequency spectrums, and Poincaré sections. The numerical results show that thermal effects induce different scenarios. The sensitivities of linear (natural frequency) and nonlinear (quadratic and cubic) coefficients to temperature variations are different. The temperature may increase or decrease the response amplitudes depending on the excitation amplitude and the sag-to-span ratio. The inflection point is shifted and exhibited at a smaller or larger excitation amplitude in thermal environments. The resonant range between two Pitchfork bifurcations seems to be reduced when the temperature is decreasing. The response amplitude is very sensitive to temperature, and even an opposite spring behavior may be exhibited due to warming/cooling conditions. However, the periodic motions seem independent of temperature variations.


Author(s):  
K.C. Newton

Thermal effects in lens regulator systems have become a major problem with the extension of electron microscope resolution capabilities below 5 Angstrom units. Larger columns with immersion lenses and increased accelerating potentials have made solutions more difficult by increasing the power being handled. Environmental control, component choice, and wiring design provide answers, however. Figure 1 indicates with broken lines where thermal problems develop in regulator systemsExtensive environmental control is required in the sampling and reference networks. In each case, stability better than I ppm/min. is required. Components with thermal coefficients satisfactory for these applications without environmental control are either not available or priced prohibitively.


Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


2006 ◽  
Vol 11 (3) ◽  
pp. 293-318 ◽  
Author(s):  
M. Zribi ◽  
N. B. Almutairi ◽  
M. Abdel-Rohman

The flexibility and low damping of the long span suspended cables in suspension bridges makes them prone to vibrations due to wind and moving loads which affect the dynamic responses of the suspended cables and the bridge deck. This paper investigates the control of vibrations of a suspension bridge due to a vertical load moving on the bridge deck with a constant speed. A vertical cable between the bridge deck and the suspended cables is used to install a hydraulic actuator able to generate an active control force on the bridge deck. Two control schemes are proposed to generate the control force needed to reduce the vertical vibrations in the suspended cables and in the bridge deck. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. The MATLAB software is used to simulate the performance of the controlled system. The simulation results indicate that the proposed controllers work well. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller.


2001 ◽  
Vol 32 (4-6) ◽  
pp. 5
Author(s):  
A. A. Dolinsky ◽  
Yu. A. Shurchkova ◽  
B. I. Basok ◽  
T. S. Ryzhkova

Sign in / Sign up

Export Citation Format

Share Document