Batch Kinetics of Metal Biosorption: Application of the Bohart-Adams Rate Law

2011 ◽  
Vol 46 (10) ◽  
pp. 1591-1601 ◽  
Author(s):  
Khim Hoong Chu ◽  
Eui Yong Kim ◽  
Xiao Feng
1979 ◽  
Vol 32 (9) ◽  
pp. 1905 ◽  
Author(s):  
AF Godfrey ◽  
JK Beattie

The oxidation of butan-1-ol by ferricyanide ion in alkaline aqueous solution is catalysed by solutions of ruthenium trichloride hydrate. The kinetics of the reaction has been reinvestigated and the data are consistent with the rate law -d[FeIII]/dt = [Ru](2k1k2 [BuOH] [FeIII])/(2k1 [BuOH]+k2 [FeIII]) This rate law is interpreted by a mechanism involving oxidation of butanol by the catalyst (k1) followed by reoxidation of the catalyst by ferricyanide (k2). The non-linear dependence of the rate on the butanol concentration is ascribed to the rate-determining, butanol-independent reoxidation of the catalyst, rather than to the saturation of complex formation between butanol and the catalyst as previously claimed. Absolute values of the rate constants could not be determined, because some of the ruthenium precipitates from basic solution. With K3RuCl6 as the source of a homogeneous catalyst solution, estimates were obtained at 30�0�C of k1 = 191. mol-1 s-1 and k2 = 1�4 × 103 l. mol-1 s-1.


1988 ◽  
Vol 32 (5) ◽  
pp. 639-646 ◽  
Author(s):  
A. Mulchandani ◽  
J. H. T. Luong ◽  
A. Leduy

1967 ◽  
Vol 45 (1) ◽  
pp. 11-16 ◽  
Author(s):  
G. A. Latrèmouille ◽  
A. M. Eastham

Isobutene reacts readily with excess trifluoroacetic acid in ethylene dichloride solution at ordinary temperatures to give t-butyl trifluoroacetate. The rate of the reaction is given, within the range of the experiments, by the expression d[ester]/dt = k[acid]2[olefin], and the apparent activation energy is about 6 kcal/mole. The rate of addition is markedly dependent on the strength of the reacting acid and is drastically reduced in the presence of mildly basic materials, such as dioxane. The boron fluoride catalyzed addition of acetic acid to 2-butene can be considered to follow a similar rate law, i.e. d[ester]/dt = k[acid·BF3]2[olefin], but only if some assumptions are made about the position of the equilibrium [Formula: see text]since only the 1:1 complex is reactive.


2007 ◽  
Vol 95 (7) ◽  
Author(s):  
E. Metwally ◽  
R. O. Abdel Rahman ◽  
R. R. Ayoub

Hydrous titanium oxide was chemically synthesized and tested as adsorbent material for the removal of cesium, cobalt and strontium ions from chloride waste solutions using batch technique. The influences of pH, contact time, and temperature have been reported. The uptake of both strontium and cobalt ions was found to be greater than that of cesium and the apparent sorption capacity of each ion increases with increase in temperature. Thermodynamic parameters such as changes in Gibbs free energy (Δ


1959 ◽  
Vol 37 (9) ◽  
pp. 1446-1450 ◽  
Author(s):  
J. Halpern ◽  
J. F. Harrod ◽  
P. E. Potter

The kinetics of the reduction of ferric chloride by molecular hydrogen in aqueous solution, in the presence of chloropalladate(II), were examined. The latter acts as a homogeneous catalyst for the reaction. The rate-law was found to be,[Formula: see text]where[Formula: see text]The mechanism of the reaction is discussed.


1975 ◽  
Vol 93 (4) ◽  
pp. 499-515 ◽  
Author(s):  
A. Wishnia ◽  
A. Boussert ◽  
M. Graffe ◽  
Ph. Dessen ◽  
M. Grunberg-Manago

2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
K. Ramesh ◽  
S. Shylaja ◽  
K. C. Rajanna ◽  
P. Giridhar Reddy ◽  
P. K. Saiprakash

Polyethylene glycol (PEG) mediated kinetic study of nitro decarboxylation ofα,β-unsaturated acids (USA) has been taken up by Blau’s [Fe(III) nitrate-Phen] yellow complex in acetonitrile medium. Kinetics of the reactions indicated Michaelis-Menton type of mechanism and rate law. Reaction rates are significantly influenced by the structural variation and concentration of PEG. Catalysis of PEG was explained on the lines of nonionic micelles such as TX-100 because of their structural resemblance and also due to a slight negative charge developed on polyoxyethylene and cationic form(s) of Fe(III) chelates in the intermediate stages.


1981 ◽  
Vol 59 (5) ◽  
pp. 839-850 ◽  
Author(s):  
Peter David Golding ◽  
Sethu Reddy ◽  
John Marshall William Scott ◽  
Valerie Ann White ◽  
June Gertrude Winter

The rates of rearrangement of N-bromo-4-chloroacetanilide to 2-bromo-4-chloroacetanilide catalyzed by trifluoroacetic acid and trifluoroacetic acid-d have been measured as a function of acid concentration in chlorobenzene at T = 323 K. Similar experiments have been carried out with N-bromoacetanilide and N-bromo-4-chloro-2,6-dideuterioacetanilide. A comprehensive analysis of the observed rates for each substrate as a function of acid concentration reveals that the rearrangements involve at least three mechanistic steps when trifluoroacetic acid is the catalyst. In contrast, the rate of rearrangement of N-bromoacetanilide catalyzed by trichloroacetic acid at T = 288 K appears to follow a limiting form of the same rate law. Earlier observations are assessed in the light of the proposed mechanism, and it is concluded that both present and past work can be satisfactorily rationalized in terms of an intramolecular migration of bromine.


2003 ◽  
Vol 69 (4) ◽  
pp. 2340-2348 ◽  
Author(s):  
Qusheng Jin ◽  
Craig M. Bethke

ABSTRACT The rate of microbial respiration can be described by a rate law that gives the respiration rate as the product of a rate constant, biomass concentration, and three terms: one describing the kinetics of the electron-donating reaction, one for the kinetics of the electron-accepting reaction, and a thermodynamic term accounting for the energy available in the microbe's environment. The rate law, derived on the basis of chemiosmotic theory and nonlinear thermodynamics, is unique in that it accounts for both forward and reverse fluxes through the electron transport chain. Our analysis demonstrates how a microbe's respiration rate depends on the thermodynamic driving force, i.e., the net difference between the energy available from the environment and energy conserved as ATP. The rate laws commonly applied in microbiology, such as the Monod equation, are specific simplifications of the general law presented. The new rate law is significant because it affords the possibility of extrapolating in a rigorous manner from laboratory experiment to a broad range of natural conditions, including microbial growth where only limited energy is available. The rate law also provides a new explanation of threshold phenomena, which may reflect a thermodynamic equilibrium where the energy released by electron transfer balances that conserved by ADP phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document