scholarly journals Polyethylene Glycol Mediated Kinetic Study of Nitro Decarboxylation ofα,β-Unsaturated Acids by Blau’s Fe(III) Phen Complex

2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
K. Ramesh ◽  
S. Shylaja ◽  
K. C. Rajanna ◽  
P. Giridhar Reddy ◽  
P. K. Saiprakash

Polyethylene glycol (PEG) mediated kinetic study of nitro decarboxylation ofα,β-unsaturated acids (USA) has been taken up by Blau’s [Fe(III) nitrate-Phen] yellow complex in acetonitrile medium. Kinetics of the reactions indicated Michaelis-Menton type of mechanism and rate law. Reaction rates are significantly influenced by the structural variation and concentration of PEG. Catalysis of PEG was explained on the lines of nonionic micelles such as TX-100 because of their structural resemblance and also due to a slight negative charge developed on polyoxyethylene and cationic form(s) of Fe(III) chelates in the intermediate stages.

1955 ◽  
Vol 33 (2) ◽  
pp. 356-364 ◽  
Author(s):  
E. Peters ◽  
J. Halpern

In aqueous solution, cupric acetate was found to act as a homogeneous catalyst for the reduction of dichromate by hydrogen, i.e.[Formula: see text] The paper describes a kinetic study of this reaction. Rates were determined at temperatures between 80° and 140 °C. and hydrogen partial pressures up to 27 atmospheres. The rate is independent of the dichromate concentration but varies directly with the partial pressure of hydrogen and is nearly proportional to the concentration of cupric acetate. The activation energy is 24,600 calories per mole. Cupric acetate, apparently acting as a true catalyst, activates the hydrogen through formation of a complex with it. An extension of the mechanism proposed earlier for the reaction of cupric acetate itself with hydrogen also accounts for the kinetics of the dichromate reaction.


1961 ◽  
Vol 39 (1) ◽  
pp. 162-170 ◽  
Author(s):  
E. A. Hahn ◽  
E. Peters

The kinetics of the Cu++-catalyzed reduction of CrVI by H2 in aqueous perchlorate solutions have been investigated between 160° and 200 °C. The mechanism proposed to account for the kinetics gives rise to a rate law of the form[Formula: see text]where[Formula: see text]As a consequence of these studies an important anomaly between the previously published rate law for dichromate reduction and a more recent kinetic study of the cupric-perchlorate-catalyzed hydrogen–oxygen recombination has been resolved.


1976 ◽  
Vol 31 (6) ◽  
pp. 619-621 ◽  
Author(s):  
Giorgio Flor ◽  
Riccardo Riccardi

The solid state reaction of MgWO4 formation from MgO (single crystals) and WO3 was investigated in the temperature range 800 - 985 °C under both air and argon atmosphere.The techniques employed for the kinetic study (contact and thermogravimetric methods) allowed to point out that the process follows the linear rate law in the early stages and the parabolic one in the subsequent stages.From inert marker experiments, kinetic determinations under the two different atmospheres and conductivity measurements, it was possible to state that the reaction is governed by a cation counterdiffusion mechanism


1989 ◽  
Vol 54 (5) ◽  
pp. 1311-1317
Author(s):  
Miroslav Magura ◽  
Ján Vojtko ◽  
Ján Ilavský

The kinetics of liquid-phase isothermal esterification of POCl3 with 2-isopropylphenol and 4-isopropylphenol have been studied within the temperature intervals of 110 to 130 and 90 to 110 °C, respectively. The rate constants and activation energies of the individual steps of this three-step reaction have been calculated from the values measured. The reaction rates of the two isomers markedly differ: at 110 °C 4-isopropylphenol reacts faster by the factors of about 7 and 20 for k1 and k3, respectively. This finding can be utilized in preparation of mixed triaryl phosphates, since the alkylation mixture after reaction of phenol with propene contains an excess of 2-isopropylphenol over 4-isopropylphenol.


1975 ◽  
Vol 53 (12) ◽  
pp. 1735-1738 ◽  
Author(s):  
William R. Cullen ◽  
Frank L. Hou

The kinetics of the unimolecular isomerization reaction[Formula: see text]have been studied. The ΔH≠ values in kcal mol−1 are 36.8 ± 2.0 (M = M′ = Mn ), 46.8 ± 0.5 (M = M′ = Re ), 39.2 ± 2.8 (M = Mn, M′ = Re ). The mechanism of the rearrangement is discussed.


2011 ◽  
Vol 324 ◽  
pp. 166-169 ◽  
Author(s):  
Farah Zeitouni ◽  
Gehan El-Subruiti ◽  
Ghassan Younes ◽  
Mohammad Amira

The rate of aquation of bromopentaammine cobalt(III) ion in the presence of different types of dicarboxylate solutions containing tert-butanol (40% V/V) have been measured spectrophotometrically at different temperatures (30-600°C) in the light of the effects of ion-pairing on reaction rates and mechanism. The thermodynamic and extrathermodynamic parameters of activation have been calculated and discussed in terms of solvent effect on the ion-pair aquation reaction. The free energy of activation ∆Gip* is more or less linearly varied among the studied dicarboxylate ion-pairing ligands indicating the presence of compensation effect between ∆Hip* and ∆Sip*. Comparing the kip values with respect of different buffers at 40% of ter-butanol is introduced.


2013 ◽  
Vol 634-638 ◽  
pp. 541-545 ◽  
Author(s):  
Jun Seong Park ◽  
Dae Hee Yun ◽  
Tae Won Ko ◽  
Yong Sung Park ◽  
Je Wan Woo

The kinetics of the Diels-Alder reaction of cyclopentadiene with bis(2-ethylhexyl) maleate has been studied at temperatures between 25 and 100 °C and at atmospheric pressure. The influence of temperature on the kinetic constants was determined by fitting the results to the Arrhenius equation. As a result, fitting line similar with the linear curve of the Arrhenius equation at 25, 30 and 40 °C. However, the fitting curve, at 60, 80 and 100 °C, tended towards the outside of the curve in the form of Arrhenius equation. The ratio of endo/exo was a slight change from increase of the reaction temperature.


1979 ◽  
Vol 32 (9) ◽  
pp. 1905 ◽  
Author(s):  
AF Godfrey ◽  
JK Beattie

The oxidation of butan-1-ol by ferricyanide ion in alkaline aqueous solution is catalysed by solutions of ruthenium trichloride hydrate. The kinetics of the reaction has been reinvestigated and the data are consistent with the rate law -d[FeIII]/dt = [Ru](2k1k2 [BuOH] [FeIII])/(2k1 [BuOH]+k2 [FeIII]) This rate law is interpreted by a mechanism involving oxidation of butanol by the catalyst (k1) followed by reoxidation of the catalyst by ferricyanide (k2). The non-linear dependence of the rate on the butanol concentration is ascribed to the rate-determining, butanol-independent reoxidation of the catalyst, rather than to the saturation of complex formation between butanol and the catalyst as previously claimed. Absolute values of the rate constants could not be determined, because some of the ruthenium precipitates from basic solution. With K3RuCl6 as the source of a homogeneous catalyst solution, estimates were obtained at 30�0�C of k1 = 191. mol-1 s-1 and k2 = 1�4 × 103 l. mol-1 s-1.


Sign in / Sign up

Export Citation Format

Share Document