scholarly journals Dyes Adsorption from Aqueous Solutions by Chitosan

2014 ◽  
Vol 50 (8) ◽  
pp. 1101-1107 ◽  
Author(s):  
Loris Pietrelli ◽  
Iolanda Francolini ◽  
Antonella Piozzi
2003 ◽  
Vol 38 (2) ◽  
pp. 393-411 ◽  
Author(s):  
Soufiane Tahiri ◽  
Ali Messaoudi ◽  
Abderrahman Albizane ◽  
Mohamed Azzi ◽  
Mohamed Bouhria ◽  
...  

Abstract In this work, the ability of chrome shavings and of crust leather buffing dusts to remove dyes from aqueous solutions has been studied. Buffing dusts proved to be a much better adsorbent than chrome shavings for cationic dyes. The adsorption of anionic dyes is very important on two studied wastes. The pH has an obvious influence on the adsorption of dyes. Adsorption of cationic dyes is less favourable under acidic conditions (pH <3.5) and at high pH values (pH >10.5). The adsorption of anionic dyes on both adsorbents is more favourable under acidic conditions (pH <3). The adsorption on chrome shavings is improved by the use of finer particles. The kinetic adsorption was also studied. Adsorption isotherms, at the optimum operating conditions, were determined. Adsorption follows the Langmuir model. The isotherm parameters have been calculated. The column technique could be applied to treat significant volumes of solutions.


2018 ◽  
Vol 3 (1) ◽  
pp. 4 ◽  
Author(s):  
Liudmyla Soldatkina ◽  
Marianna Zavrichko

Corn stalks (CS) were modified by a cationic surfactant, cetylpyridinium bromide (CPB), and used as an adsorbent (CS-CP) to remove anionic dyes [Acid Red (AR) and Acid Orange (AO)] from aqueous solutions. The FTIR analysis and the obtained calculations based on the determination of the adsorption capacity of CS towards CPB confirmed that the cationic surfactant had been adsorbed on the surface of corn stalks. Adsorption of the anionic dyes on modified corn stalks was investigated in a series of batch adsorption experiments at 303–328 K. The adsorption data were analyzed using Langmuir, Freundlich, and Temkin models. The Langmuir model was found to be more suitable for the experimental data of the anionic dyes on CS-CP than other adsorption models. Kinetic studies revealed that the pseudo-second order model showed the best fit to the experimental data. The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic. Mechanisms involving ion exchange and chemisorption might be responsible for the uptake of the anionic dyes on CS-CP. Obtained results imply that CS-CP could be applied as an effective adsorbent to remove anionic dyes from aqueous solutions.


2021 ◽  
Author(s):  
Iolanda Viorica Ganea ◽  
◽  
Alexandrina Nan ◽  
Calin Baciu ◽  
Rodica Turcu ◽  
...  

Author(s):  
K. J. Böhm ◽  
a. E. Unger

During the last years it was shown that also by means of cryo-ultra-microtomy a good preservation of substructural details of biological material was possible. However the specimen generally was prefixed in these cases with aldehydes.Preparing ultrathin frozen sections of chemically non-prefixed material commonly was linked up to considerable technical and manual expense and the results were not always satisfying. Furthermore, it seems to be impossible to carry out cytochemical investigations by means of treating sections of unfixed biological material with aqueous solutions.We therefore tried to overcome these difficulties by preparing yeast cells (S. cerevisiae) in the following manner:


Author(s):  
S.A.C. Gould ◽  
B. Drake ◽  
C.B. Prater ◽  
A.L. Weisenhorn ◽  
S.M. Lindsay ◽  
...  

The atomic force microscope (AFM) is an instrument that can be used to image many samples of interest in biology and medicine. Images of polymerized amino acids, polyalanine and polyphenylalanine demonstrate the potential of the AFM for revealing the structure of molecules. Images of the protein fibrinogen which agree with TEM images demonstrate that the AFM can provide topographical data on larger molecules. Finally, images of DNA suggest the AFM may soon provide an easier and faster technique for DNA sequencing.The AFM consists of a microfabricated SiO2 triangular shaped cantilever with a diamond tip affixed at the elbow to act as a probe. The sample is mounted on a electronically driven piezoelectric crystal. It is then placed in contact with the tip and scanned. The topography of the surface causes minute deflections in the 100 μm long cantilever which are detected using an optical lever.


Sign in / Sign up

Export Citation Format

Share Document