Biological activities of essential oils from Moroccan plants against the honey bee ectoparasitic mite, Varroa destructor

Author(s):  
Hassan Alahyane ◽  
Mohamed Ouknin ◽  
Houda Aboussaid ◽  
Said El Messoussi ◽  
Jean Costa ◽  
...  
Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1182
Author(s):  
Roberto Bava ◽  
Fabio Castagna ◽  
Cristian Piras ◽  
Ernesto Palma ◽  
Giuseppe Cringoli ◽  
...  

Varroa destructor is the most important ectoparasitic mite of honey bees that has a negative impact on bee health and honey production. The control programs are mainly based on the use of synthetic acaricides that are often administered indiscriminately. All this has led to drug resistance that now represent a great concern for honey bee farming. The research for alternative products/methods for mites’ control is now mandatory. The aim of this study was to test whether Citrus spp. essential oils could diminish the growth of the V. destructor mite. In Calabria (southern Italy), plants of the Citrus genus are very common and grow both spontaneously and cultured. The essential oils used in this study were extracted from bergamot (Citrus bergamia), grapefruit (Citrus paradisi), lemon (Citrus limon), orange (Citrus sinensis), and mandarin (Citrus reticulata) by hydrodistillation. Every EO was in vitro tested against V. destructor. Each experimental replicate was performed using 35 viable adult female mites (5 for each EO) collected the same day from the same apiary and included negative controls (5 individuals exposed to acetone only) and positive controls (5 individuals exposed to Amitraz diluted in acetone). The essential oils (Eos) were diluted (0.5 mg/mL, 1 mg/mL, and 2 mg/mL) in HPLC grade acetone to obtain the working solution to be tested (50 µL/tube). Mite mortality was manually assessed after 1 h exposure under controlled conditions. The essential oils that showed the best effectiveness at 0.5 mg/mL were bergamot, which neutralized (dead + inactivated) 80% (p ≤ 0.001) of the parasites; grapefruit, which neutralized 70% (p ≤ 0.001); and lemon, which neutralized 69% of them. Interestingly, the positive control (Amitraz) at the same concentration neutralized 60% of the parasites. These results demonstrate that Calabrian bergamot, grapefruit, and lemon Eos consistently reduced V. destructor viability and open the possibility for their utilization to control this parasite in honey bee farming.


Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 243 ◽  
Author(s):  
Aleš Gregorc ◽  
Blair Sampson

Determining varroa mite infestation levels in honey bee colonies and the proper method and time to perform a diagnosis are important for efficient mite control. Performing a powdered sugar shake or counting mites that drop from combs and bees onto a hive bottom board are two reliable methods for sampling varroa mite to evaluate the efficacy of an acaricide treatment. This overview summarizes studies that examine the efficacy of organic acids and essential oils, mite monitoring, and brood interruption for integrated varroa mite control in organic beekeeping.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Qodratollah Sabahi ◽  
Mollah Md. Hamiduzzaman ◽  
Juan S. Barajas-Pérez ◽  
Jose M. Tapia-Gonzalez ◽  
Ernesto Guzman-Novoa

This study examined the toxicity of anethole and that of the essential oils of lemongrass (Cymbopogon citratus) and sweet marigold (Tagetes lucida) to the mite Varroa destructor and to honey bee workers and larvae. Anethole was the most toxic compound to V. destructor (LC50: 304.9 μg/ml), whereas Tagetes oil was the least toxic (LC50: 1256.27 μg/ml). The most and least toxic compounds to worker bees were anethole and Tagetes oil with LD50s of 35942 and 85381 μg/ml, respectively. For larvae, Tagetes oil was the most toxic compound (LD50: 9580.7 μg/ml) and anethole the least toxic (LD50: 14518.0 μg/ml). Anethole and Cymbopogon oil had the highest selectivity ratios. The expression of AChE, a gene that regulates the production of acetyl cholinesterase, a detoxifying enzyme, was not altered in bees treated with the plant compounds at 48 h post-treatment. This study showed that anethole and Cymbopogon oil have potential for controlling Varroa mites and seem to be relatively safe for larvae and adult honey bees.


2009 ◽  
Vol 48 (1) ◽  
pp. 77-78 ◽  
Author(s):  
Sandra Rosa Fuselli ◽  
Matías Maggi ◽  
Susana Beatriz García de la Rosa ◽  
Judith Principal ◽  
Martín Javier Eguaras ◽  
...  

2020 ◽  
Author(s):  
Cristian M. Aurori ◽  
Alexandru‐Ioan Giurgiu ◽  
Benjamin H. Conlon ◽  
Chedly Kastally ◽  
Daniel S. Dezmirean ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 717
Author(s):  
Rita Abou Nader ◽  
Rawan Mackieh ◽  
Rim Wehbe ◽  
Dany El El Obeid ◽  
Jean Marc Sabatier ◽  
...  

Honeybees are one of the most marvelous and economically beneficial insects. As pollinators, they play a vital role in every aspect of the ecosystem. Beehive products have been used for thousands of years in many cultures for the treatment of various diseases. Their healing properties have been documented in many religious texts like the Noble Quran and the Holy Bible. Honey, bee venom, propolis, pollen and royal jelly all demonstrated a richness in their bioactive compounds which make them effective against a variety of bacterial strains. Furthermore, many studies showed that honey and bee venom work as powerful antibacterial agents against a wide range of bacteria including life-threatening bacteria. Several reports documented the biological activities of honeybee products but none of them emphasized on the antibacterial activity of all beehive products. Therefore, this review aims to highlight the antibacterial activity of honey, bee venom, propolis, pollen and royal jelly, that are produced by honeybees.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 216
Author(s):  
Matthieu Guichard ◽  
Benoît Droz ◽  
Evert W. Brascamp ◽  
Adrien von Virag ◽  
Markus Neuditschko ◽  
...  

For the development of novel selection traits in honey bees, applicability under field conditions is crucial. We thus evaluated two novel traits intended to provide resistance against the ectoparasitic mite Varroa destructor and to allow for their straightforward implementation in honey bee selection. These traits are new field estimates of already-described colony traits: brood recapping rate (‘Recapping’) and solidness (‘Solidness’). ‘Recapping’ refers to a specific worker characteristic wherein they reseal a capped and partly opened cell containing a pupa, whilst ‘Solidness’ assesses the percentage of capped brood in a predefined area. According to the literature and beekeepers’ experiences, a higher recapping rate and higher solidness could be related to resistance to V. destructor. During a four-year field trial in Switzerland, the two resistance traits were assessed in a total of 121 colonies of Apis mellifera mellifera. We estimated the repeatability and the heritability of the two traits and determined their phenotypic correlations with commonly applied selection traits, including other putative resistance traits. Both traits showed low repeatability between different measurements within each year. ‘Recapping’ had a low heritability (h2 = 0.04 to 0.05, depending on the selected model) and a negative phenotypic correlation to non-removal of pin-killed brood (r = −0.23). The heritability of ‘Solidness’ was moderate (h2 = 0.24 to 0.25) and did not significantly correlate with resistance traits. The two traits did not show an association with V. destructor infestation levels. Further research is needed to confirm the results, as only a small number of colonies was evaluated.


Sign in / Sign up

Export Citation Format

Share Document