A nonregressor nonlinear disturbance observer-based adaptive control scheme for an underwater manipulator

2013 ◽  
Vol 27 (16) ◽  
pp. 1273-1283 ◽  
Author(s):  
M. Santhakumar
2020 ◽  
Vol 53 ◽  
pp. 109-116 ◽  
Author(s):  
Bahareh Aboutalebian ◽  
Heidar Ali Talebi ◽  
Sahar Etedali ◽  
Amir Abolfazl Suratgar

Author(s):  
Vahid Razmavar ◽  
Heidar Ali Talebi ◽  
Farzaneh Abdollahi

<span>In this article a novel composite control technique is introduced. We added a nonlinear disturbance observer to a nonlinear H_∞ control to form this composite controller. The quadrotor kinematics and dynamics is formulated using euler angles and parameters. After that, this nonlinear robust controller is developed for this flying robot attitude control for the outdoor conditions. Because under these conditions the flying robot, experiences both external disturbance and parametric uncertainty. Stability analysis is also presented to show the global asymptotical stability using a Lyapunov function. The simulation results showed that the suggested composite controller had a better performance in comparison with a nonlinear H_∞ control scheme.</span>


2016 ◽  
Vol 13 (6) ◽  
pp. 172988141667769 ◽  
Author(s):  
Dianwei Qian ◽  
Chengdong Li ◽  
Shiwen Tong ◽  
Lu Yu

This article proposes a control scheme for formation of maneuvers of a team of mobile robots. The control scheme integrates the integral sliding mode control method with the nonlinear disturbance observer technique. The leader–follower formation dynamics suffer from uncertainties originated from the individual robots. The uncertainties challenge the formation control of such robots. Assuming that the uncertainties are unknown but bounded, an nonlinear disturbance observer-based observer is utilized to approximate them. The observer outputs feed on an integral sliding mode control-based controller. The controller and observer are integrated into the control scheme to realize formation maneuvers despite uncertainties. The formation stability is analyzed by means of the Lyapunov’s theorem. In the sense of Lyapunov, not only the convergence of the approximation errors is guaranteed but also such a control scheme can asymptotically stabilize the formation system. Compared to the results by the sole integral sliding mode control, some simulations are presented to demonstrate the feasibility and performance of the control scheme.


2020 ◽  
Vol 42 (14) ◽  
pp. 2601-2610
Author(s):  
Huifeng Zhang ◽  
Xinjiang Wei ◽  
Lingyan Zhang ◽  
Jian Han

An anti-disturbance control problem is investigated in this paper. The disturbance observer plus back-stepping (DOPBS) control scheme is proposed for a class of strict-feedback nonlinear systems with derivative-bounded disturbances. A nonlinear disturbance observer is designed to estimate the derivative-bounded disturbances. By combining the disturbance observer with back-stepping method, the DOPBS controller is designed to reject and attenuate the disturbances. Stability analysis proves that all the signals in the the closed-loop system are uniformly ultimately bounded (UUB). Finally, simulation examples demonstrate the feasibility and effectiveness of the proposed approach compared with existing methods.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jian Fu ◽  
Liangming Wang ◽  
Mou Chen ◽  
Sijiang Chang

A robust adaptive backstepping attitude control scheme, combined with invariant-set-based sliding mode control and fast-nonlinear disturbance observer, is proposed for the airbreathing hypersonic vehicle with attitude constraints and propulsive disturbance. Based on the positive invariant set and backstepping method, an innovative sliding surface is firstly developed for the attitude constraints. And the propulsive disturbance of airbreathing hypersonic vehicle is described as a differential equation which is motivated by attitude angles in this paper. Then, an adaptive fast-nonlinear disturbance observer for the proposed sliding surface is designed to estimate this kind of disturbance. The convergence of all closed-loop signals is rigorously proved via Lyapunov analysis method under the developed robust attitude control scheme. Finally, simulation results are given to illustrate the effectiveness of the proposed attitude control scheme.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wei Yuan ◽  
Guoqin Gao ◽  
Jianzhen Li

An adaptive backstepping sliding mode controller combined with a nonlinear disturbance observer is designed for trajectory tracking of the electrically driven hybrid conveying mechanism with mismatched disturbances. A nonlinear disturbance observer is constructed for estimation and compensation of the mismatched and matched disturbances. Then, a hybrid control scheme is designed by combining the adaptive backstepping sliding mode controller and the mentioned observer. The Lyapunov candidate functions are utilized to derive the control and adaptive law. According to the simulation and experimental results, superior tracking performance could be obtained through the presented control scheme compared with conventional backstepping sliding mode control. Meanwhile, the presented control scheme can effectively reduce the chattering problem and improve tracking precision.


Sign in / Sign up

Export Citation Format

Share Document