scholarly journals Nonlinear finite element analysis of bond-slip performance of recycled aggregate concrete filled circular steel tube

2019 ◽  
Vol 33 (12) ◽  
pp. 1294-1319 ◽  
Author(s):  
Guoliang Bai ◽  
Biao Liu
2009 ◽  
Vol 417-418 ◽  
pp. 745-748
Author(s):  
Jian Zhuang Xiao ◽  
M.M. Tawana ◽  
Xiao Hui Zhu

With the achievements made in the research of mechanical properties for recycled aggregate concrete, this paper adopts the method of nonlinear finite element to analyze the seismic behavior of frame joints. The frame joints are made of recycled aggregate concrete. It also takes into account the bond behavior between steel bars and recycled aggregate concrete in the core area of the joints, and the force-displacement curve of the joints is calculated. Nonlinear finite element analysis shows that the results of the calculations are in accordance with the test results. It is concluded in this paper that, built models with nonlinear finite element method can be applied in simulating exactly the same seismic behavior of frame joints under low frequency reversed lateral loading.


2013 ◽  
Vol 446-447 ◽  
pp. 1472-1476
Author(s):  
Xu Xiang Wang ◽  
Feng Liu ◽  
Wen Xian Feng ◽  
Lan Zeng

Horizontal bearing capacity and seismic resistance of Recycled aggregate Concrete Filled Steel Tube (RCFST) columns under low cyclic loads have been analyzed by nonlinear finite element software in this paper. A three-dimensional nonlinear finite element (FE) model was developed, and some parameters that affect the restoring force model of RCFST columns were studied, including axial compression ratio, steel ratio, steel yield strength, strength of core recycled aggregate concrete and recycled aggregate substitution rate. Analysis results show that, along with steel ratio, steel yield strength and recycled aggregate substitution rate increasing, seismic resistance of RCFST becomes better. However, the increase of core recycled aggregate concrete and axial compression ratio will weaken seismic resistance of RCFST columns.


2012 ◽  
Vol 166-169 ◽  
pp. 3233-3236 ◽  
Author(s):  
Jun Tao Li ◽  
Jin Jun Xu ◽  
Zong Ping Chen ◽  
Yi Li ◽  
Ying Liang

In order to research the interface bond-slip behaviors of recycled aggregate concrete-filled square steel tube (RACFSST), ten specimens using waste concrete were designed for launch test. The three changing parameters were concrete strength grade, embedded length and recycled coarse aggregate replacement rate. The load–slip curves of square steel tubes and recycled aggregate concrete were obtained, and starting bond strength and ultimate bond strength influenced by each changing parameter were analyzed. The results show that the replacement rate had a slight influence on the starting bond strength and ultimate bond strength, while the embedded length had the opposite effect. The shorter embedded length specimens had larger bond strength. The concrete strength had a relatively large influence on them.


2013 ◽  
Vol 357-360 ◽  
pp. 1383-1388 ◽  
Author(s):  
Hai Feng Yang ◽  
Zhi Heng Deng ◽  
Yue Feng Hu

In order to study the mechanistic differences between recycled aggregate concrete (RAC)and normal aggregate concrete(NAC), the magnifier and scanning electron microscope were used to observe the meso-interfacial structure and microstructure of interfacial transition zone morphology of the RAC respectively, and analysed differences between RAC and NAC; Secondly, the finite element software ABAQUS was used to simulation the simplified model of RAC. The above analysis results show that, there existe a transition zone in the interface, the aggregate-new mortar interface as well as the new-old mortar interface has been obvious cracks before loading, this part is the weak link of RAC ;After loading, the crack occurs first in the old interface, then appeared at the new interface, and then develop to the old mortar, finally, there formed a through crack.


2012 ◽  
Vol 166-169 ◽  
pp. 318-321
Author(s):  
Ya Feng Xu ◽  
Xu Yang ◽  
Xin Wang ◽  
Shou Yan Bai

The article analysis the seismic behaviors of circular steel tube composite column filled with steel reinforced concrete by the large finite element analysis software ABAQUS, adopted the load-displacement method and aimed at studying the mechanical properties of circular steel tube composite columns filled with steel reinforced concrete under horizontal low-cyclic loading, considering the degree of ductility, capacity of energy dissipation by the steel ratio and axial compression ratio. Under different axial compression ratios and steel ratios, the hysteresis curves and skeleton curves are carried out. Along with the increase of steel ratio, the deformation ability and ultimate bearing capacity are raised, but with the increase of axial compression ratio, the deformation ability becomes worse.


Sign in / Sign up

Export Citation Format

Share Document