Finite element analysis of steel reinforced recycled aggregate concrete axial compression short column

Author(s):  
Bing Wang ◽  
Xiao Liu ◽  
Lu Gao
2013 ◽  
Vol 357-360 ◽  
pp. 1383-1388 ◽  
Author(s):  
Hai Feng Yang ◽  
Zhi Heng Deng ◽  
Yue Feng Hu

In order to study the mechanistic differences between recycled aggregate concrete (RAC)and normal aggregate concrete(NAC), the magnifier and scanning electron microscope were used to observe the meso-interfacial structure and microstructure of interfacial transition zone morphology of the RAC respectively, and analysed differences between RAC and NAC; Secondly, the finite element software ABAQUS was used to simulation the simplified model of RAC. The above analysis results show that, there existe a transition zone in the interface, the aggregate-new mortar interface as well as the new-old mortar interface has been obvious cracks before loading, this part is the weak link of RAC ;After loading, the crack occurs first in the old interface, then appeared at the new interface, and then develop to the old mortar, finally, there formed a through crack.


2009 ◽  
Vol 417-418 ◽  
pp. 745-748
Author(s):  
Jian Zhuang Xiao ◽  
M.M. Tawana ◽  
Xiao Hui Zhu

With the achievements made in the research of mechanical properties for recycled aggregate concrete, this paper adopts the method of nonlinear finite element to analyze the seismic behavior of frame joints. The frame joints are made of recycled aggregate concrete. It also takes into account the bond behavior between steel bars and recycled aggregate concrete in the core area of the joints, and the force-displacement curve of the joints is calculated. Nonlinear finite element analysis shows that the results of the calculations are in accordance with the test results. It is concluded in this paper that, built models with nonlinear finite element method can be applied in simulating exactly the same seismic behavior of frame joints under low frequency reversed lateral loading.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3140 ◽  
Author(s):  
Yong Yu ◽  
Bo Wu

In the past decade, directly reusing large pieces of coarsely crushed concrete (referred to as demolished concrete lumps or DCLs) with fresh concrete in new construction was demonstrated as an efficient technique for the recycling of waste concrete. Previous studies investigated the mechanical properties of recycled lump concrete (RLC) containing different sizes of DCLs; however, for actual application of this kind of concrete, little information is known about the influence of the spatial locations of DCLs and coarse aggregates on the concrete strength. Moreover, the mechanical responses of such a concrete containing various shapes of DCLs are also not well illustrated. To add knowledge related to these topics, two-dimensional mesoscale simulations of RLC containing DCLs under axial compression were performed using the discrete element method. The main variables of interest were the relative strength of the new and old concrete, the distribution of the lumps and other coarse aggregates, and the shape of the lumps. In addition, the differences in compression behavior between RLC and recycled aggregate concrete were also predicted. The numerical results indicate that the influence tendency of the spatial locations of DCLs and coarse aggregate pieces on the compressive stress–strain curves for RLC is similar to that of the locations of coarse aggregates for ordinary concrete. The strength variability of RLC is generally higher than that of ordinary concrete, regardless of the relative strength of the new and old concrete included; however, variability has no monotonic trend with an increase in the lump replacement ratio. The mechanical properties of RLC in compression are little influenced by the geometric shape of DCLs as long as the ratio of the length of their long axis to short axis is smaller than 2.0. The compressive strength and elastic modulus of RLC are always superior to those of recycled aggregate concrete designed with a conventional mixing method.


2014 ◽  
Vol 1079-1080 ◽  
pp. 177-182
Author(s):  
Shao Wu Zhang ◽  
Ying Chuan Chen ◽  
Geng Biao Zhang

In order to study the performance of concrete frame columns that reinforcedby assembleinclined web steel truss, with the same reciprocatinghorizontal displacement and different axialcompression.It canbe calculate the mechanical behavior of concrete frame columns and reinforced columns by using the finite element analysis software ABAQUS. Simulation analysis shows that the bearing capacity ofreinforced columnshas greatly increased andpresented a full hysteresis curve. The result shows that the reinforcement method of assemble inclined web steel truss can greatly improve the bearing capacity and ductility of the concrete frame column, and the axial compression is larger, the better the reinforcement effect.


Sign in / Sign up

Export Citation Format

Share Document