Effect of expired paracetamol–Zn+2 system and its synergistic effect towards iron dissolution inhibition and green inhibition performance

Author(s):  
Reda S. Abdel Hameed ◽  
Enas H. Aljuhani ◽  
Rasha Felaly ◽  
Alaa M. Munshi
2020 ◽  
Vol 10 (4) ◽  
pp. 1444 ◽  
Author(s):  
Mohamed F. Shehata ◽  
Ashraf M. El-Shamy ◽  
Khaled M. Zohdy ◽  
El-Sayed M. Sherif ◽  
Sherif Zein El Abedin

In this paper the anti-bacterial and the anti-corrosion effect of two different ionic liquids, namely 1-(2-hydroxyethyl)-3-methylimidazolinium chloride ([OH-EMIm]Cl) and 1-ethyl-3-methyleimidazolinium chloride ([EMIm]Cl) was demonstrated. The results revealed that the corrosion inhibition influence of the ionic liquid [OH-EMIm]Cl is higher than that of the ionic liquid [EMIm]Cl. Furthermore, the ionic liquid [OH-EMIm]Cl showed better biocidal influence compared with the ionic liquid [EMIm]Cl. This indicates the synergistic effect due to the incorporation of the hydroxyl group into the side chain of the imidazolium cation leading to enhanced antibacterial and anticorrosion effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arul Bharathi ◽  
Omar Nashed ◽  
Bhajan Lal ◽  
Khor Siak Foo

AbstractThis paper presents an experimental and modeling studies on the thermodynamic inhibition effects of the mixture of monoethlyene glycol (MEG) and glycine (Gly) on the carbon dioxide hydrate phase boundary condition. The monoethlyene glycol and glycine (1:1) mixture inhibition effects were investigated at concentrations of 5, 10, and 15 wt.% and pressure ranges from 2.0–4.0 MPa. The effects of the proposed mixture on the carbon dioxide hydrate phase boundary were evaluated by measuring the dissociation temperature of carbon dioxide hydrate using a T-cycle method. The synergistic effect was evaluated based on comparison with pure MEG and Gly data. The results show that 15 wt.% of MEG and Gly mixture displays the highest inhibition effect compared to the 5 and 10 wt.% mixtures, respectively. However, the synergistic effect is higher at 10 wt.%. Dickens' model was also adopted to predict the phase equilibrium data of CO2 hydrates in the presence of the mixture. The modified model successfully predicted the data within a maximum error of ± 0.52 K.


2020 ◽  
Author(s):  
Weiqiang Song ◽  
Xiaohua Liu ◽  
Qingsong Zhu ◽  
Yuxiang Zhang

ADTP-GO hybrid was prepared from multi-layered aluminum dihydric tripolyphosphate (ADTP) and flake-shaped graphene oxide (GO) by a coupling method using (3-aminopropyl) triethoxysilane (ASi) as the coupling agent. Characterization analyses of the hybrid were performed by FT-IR, XRD and SEM. The effect of incorporating 2wt% ADTP-GO hybrid on corrosion inhibition performance of epoxy coating was evaluated in 3.5wt.% NaCl aqueous solution by using Tafel and electrochemical impedance spectroscopy (EIS) analysis. For comparison, the effects of ADTP and GO, alone and in combination without coupling treatment were also evaluated. FT-IR and XRD showed the presence of the chemical interaction between ADTP and GO in ADTP-GO hybrid. SEM indicated that GO was spread on the surface of ADTP layers in the hybrid. Tafel and EIS data indicated that the hybrid displayed an anti-corrosion performance superior to ADTP/GO blend without coupling treatment. The superiority was attributed to the stronger synergetic effect of ADTP and GO in ADTP-GO hybrid than in ADTP/GO blend. Additionally, epoxy/ADTP/GO coating was better than pure epoxy, epoxy/ADTP, and epoxy/GO coatings in the anti-corrosion performance on mild steel. It seems that the combination of ADTP and GO produced synergistic effect, and the synergistic effect was more obvious after chemical coupling.


2019 ◽  
Vol 43 (35) ◽  
pp. 13899-13910 ◽  
Author(s):  
Weiwei Zhang ◽  
Hui-Jing Li ◽  
Chen Wang ◽  
Li-Juan Wang ◽  
Gen Li ◽  
...  

The inhibition performance and synergistic inhibition effect of DMU with Tween-80 on the corrosion of mild steel in 1 M HCl was studied for the first time.


The authors' methodic for assessing the role of chemical and physic-chemical factors during the structure formation of gypsum stone is presented in the article. The methodic is also makes it possible to reveal the synergistic effect and to determine the ranges of variation of controls factors that ensure maximum values of such effect. The effect of a micro-sized modifier based on zinc hydro-silicates on the structure formation of building gypsum is analyzed and corresponding dependencies are found. It is shown that effects of influence of modifier on the properties of gypsum compositions are determined by chemical properties of modifier. Among the mentioned properties are sorption characteristics (which depend on the amount of silicic acid and its state) and physicochemical properties - the ability to act as a substrate during crystal formation. The proposed method can also be extended to other binding substances and materials. This article contributes to the understanding of the processes that occur during the structure formation of composites, which will make it possible to control the structure formation in the future, obtaining materials with a given set of properties.


2005 ◽  
Vol 67 (3) ◽  
pp. 247-251 ◽  
Author(s):  
Motoi TAKENAKA ◽  
Sang Jae BAE ◽  
Shinichi SATO ◽  
Ichiro KATAYAMA

Sign in / Sign up

Export Citation Format

Share Document