Saline water and MSW compost: Effects on yield of maize crop and soil responses

2016 ◽  
Vol 39 (13) ◽  
pp. 1863-1873 ◽  
Author(s):  
Rita Leogrande ◽  
Carolina Vitti ◽  
Ornella Lopedota ◽  
Domenico Ventrella ◽  
Francesco Montemurro
Author(s):  
Francisco H. R. Costa ◽  
Geovana F. Goes ◽  
Murilo de S. Almeida ◽  
Clarissa L. Magalhães ◽  
José T. M. de Sousa ◽  
...  

ABSTRACT Irrigation with saline water affects the agronomic performance of the maize crop; however, the use of vegetal mulch may mitigate salt stress and promote an increase in yield. In this way, this study aimed to evaluate the grain yield of the maize plants submitted to different water salinity levels in the presence and absence of mulch. The experiment was conducted in a randomized block design arranged in a 2 × 2 factorial scheme. The first factor was the salinity of the irrigation water (1.0 and 4.0 dS m-1) and the second, with and without mulch, and five replicates. The variables analyzed were: unhusked ear mass, husked ear mass, cob mass, straw mass, husked ear diameter, husked ear length, and yield. The irrigation water with higher electrical conductivity affects negatively the ear mass with and without straw, ear diameter and ear length. The use of vegetation cover on the soil increased the unhusked ear mass with and without straw, ear diameter and length. The water with higher salinity (4.0 dS m-1) reduces the maize grain yield but with less intensity in the presence of mulch.


Author(s):  
Valdécio dos S. Rodrigues ◽  
Francisco M. L. Bezerra ◽  
Geocleber G. de Sousa ◽  
Jamili N. Fiusa ◽  
Kelly N. Leite ◽  
...  

ABSTRACT The growing competition for good-quality water is forcing the use of saline water for irrigation in several areas around the world. The objective of this study was to evaluate the influence of different electrical conductivities of irrigation water on the maize production aspects. The study was conducted in the field from August to December 2017 at the Experimental Farm of the Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB), Redenção, CE, Brazil. A randomized complete block design with five irrigation water salinity (1.0, 2.0, 3.0, 4.0 and 5.0 dS m-1) and four repetitions was used. The evaluated variables were: unhusked and husked ear weights, husked ear length and diameter, cob weight, 1000-grain weight and yield. The increase of salt concentration in irrigation water reduced the unhusked and husked ear weights, cob weight, 1000-grain weight and yield. Ear length and diameter were not influenced by the increase in water salinity.


Agronomy ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 94 ◽  
Author(s):  
Sonia Mbarki ◽  
Milan Skalicky ◽  
Ons Talbi ◽  
Amrita Chakraborty ◽  
Frantisek Hnilicka ◽  
...  

The use of saline water for the irrigation of forage crops to alleviate water scarcity has become necessary in semi-arid and arid regions and researchers have been seeking ways to offset the harmful results of soil salinity. Soil amendments with compost, manure and other organic material provide a valuable source of plant nutrients and appear to speed up soil recovery. The aim of this study was to compare the benefits of farmyard manure and a municipal solid waste (MSW) compost (40 mg ha−1) for raising alfalfa (Medicago sativa, cv. Gabès) under salt-water irrigation. Both compost and manure improved plant mineral uptake and growth of alfalfa cultivated in clay soil. Using compost in clay soil increased the content of copper (Cu), cadmium (Cd), and zinc (Zn) in plant tissues compared to manure, while the bio-accumulation factor (BAF) of Cu, Pb and Zn was higher in plants grown with manure compared to MSW compost with salt stress. Compost addition could enhance alfalfa growth under salt stress, which depends on salt doses and can greatly improve the recovery effects in a cost-effective way, although additional amendment type should receive special attention in order to be used as a tool for sustainable agriculture.


Author(s):  
Roberto González-De Zayas ◽  
Liosban Lantigua Ponce de León ◽  
Liezel Guerra Rodríguez ◽  
Felipe Matos Pupo ◽  
Leslie Hernández-Fernández

The Cenote Jennifer is an important and unique aquatic sinkhole in Cayo Coco (Jardines del Rey Tourist Destination) that has brackish to saline water. Two samplings were made in 1998 and 2009, and 4 metabolism community experiments in 2009. Some limnological parameters were measured in both samplings (temperature, salinity, pH, dissolved oxygen major ions, hydrogen sulfide, nutrients and others). Community metabolism was measured through incubated oxygen concentration in clear and dark oxygen bottles. Results showed that the sinkhole limnology depends on rainfall and light incidence year, with some stratification episodes, due to halocline or oxycline presence, rather than thermocline. The sinkhole water was oligotrophic (total nitrogen of 41.5 ± 22.2 μmol l−1 and total phosphorus of 0.3 ± 0.2 μmol l−1) and with low productivity (gross primary productivity of 63.0 mg C m−2 d−1). Anoxia and hypoxia were present at the bottom with higher levels of hydrogen sulfide, lower pH and restricted influence of the adjacent sea (2 km away). To protect the Cenote Jennifer, tourist exploitation should be avoided and more resources to ecological and morphological studies should be allocated, and eventually use this aquatic system only for specialized diving. For conservation purposes, illegal garbage disposal in the surrounding forest should end.


Sign in / Sign up

Export Citation Format

Share Document