Effect of liming and phosphorus sources on soil fertility, growth, and nutritional status of guava seedlings in three tropical soils

2021 ◽  
pp. 1-10
Author(s):  
Jorge João Delfim ◽  
João Odemir Salvador ◽  
Larissa Alexandra Cardoso Moraes ◽  
Adônis Moreira
2019 ◽  
Vol 11 (5) ◽  
pp. 142
Author(s):  
Rodrigo T. M. Miyake ◽  
William H. S. Takata ◽  
Nobuyoshi Narita ◽  
José E. Creste

The research had as objective to study the influence of the doses of nitrogen, phosphorus and potassium on soil fertility and nutritional status of yellow passion fruit plants. The experimental design was in randomized blocks in an incomplete fractioned factorial 1/2 (4 × 4 × 4), with four doses of N (150, 300, 600 and 1200 Kg-1 ha-1 yr-1 N); four doses of P2O5 (200, 400, 800 and 1600 kg-1 ha-1 yr-1) and four doses of K2O (100, 300, 500 and 700 kg-1 ha-1 yr-1). The fertilizers used were the ammonium nitrate = 32% N; triple superphosphate = 44% P2O5 and potassium chloride = 60% K2O. In the fertility of the nitrogen fertilization increased the content of phosphorus and sulfur. The doses of P2O5 increased the concentration of P in the soil. The doses of K2O influenced the increase in the content of K in the soil in the harvest 2013/2014. There was an interaction of the doses of N and K2O in the availability of K in the soil in the harvest 2012/13 with the maximum levels of K, in the doses of 200-400 kg N ha-1 and 600 to 700 kg ha-1 of K2O. In the nutritional state the yellow passion fruit plants was influenced by the doses of N for the sulfur content of the leaves. The maximum content of S leaf concentration of 3.63 g kg-1 was obtained in the dose estimated at 1120 kg ha-1 of P2O5.


1969 ◽  
Vol 90 (3-4) ◽  
pp. 145-157 ◽  
Author(s):  
David Sotomayor-Ramírez ◽  
Gustavo A. Martínez

There is a need to quantitatively assess the soil fertility status of tropical soils. Descriptive summaries help describe the effectiveness of liming programs, nutritional limitation in soils and the relative risk of off-field nutrient transport. A database of 1,168 soil test results collected from 1989 to 1999 from nearly 400 cultivated farms in Puerto Rico was used. Samples were analyzed for pH, organic matter (Walkley-Black method), extractable phosphorus (P) (Olsen and Bray 1), and exchangeable bases (NH4Oac method) by a commercial laboratory. Thirty-six percent of the samples had acidity problems (pH <5.5). Twenty-three percent of the samples had low organic matter content (<20 g/kg), and 16% had high category (>40 g/kg) values. Fifty-three and 56% of the samples showed a need to fertilize with magnesium (Mg) and potassium (K), respectively, because they had values below the suggested critical levels of 2.5 cmolc/kg for soil exchangeable Mg and of 0.4 cmolc/kg for K. On the basis of current soil fertility criteria, P fertilization would be required in 69% of the samples with pH less than 7.3, but only in 28% of the samples with pH greater than or equal to 7.3. Although the soils grouped with pH >7.3 had a greater proportion of samples in the "extremely high" soil test P category, the potential environmental impact may be lessened because the climatic and topographic conditions where these soils occur favor less runoff. Follow-up studies are needed to assess the spatial variability and the temporal dynamics of the nutritional status of soils of Puerto Rico. 


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Rachel C. Pinho ◽  
Robert P. Miller ◽  
Sonia S. Alfaia

This paper discusses the effects of trees on soil fertility, with a focus on agricultural systems in Amazonia. Relevant literature concerning the effects of trees on soil physical and chemical properties in tropical, subtropical, and temperate regions is reviewed, covering both natural ecosystems and agroecosystems. Soil carbon, in the form of organic matter, is considered as an indicator of biological activity as well as in relation to policy issues such as carbon sequestration and climate change. In the case of tropical soils and Amazonia, information on the effects of trees on soils is discussed in the context of traditional agriculture systems, as well as in regard to the development of more sustainable agricultural alternatives for the region. Lastly, attention is given to a case study in the savanna region of Roraima, northern Brazil, where a chronosequence of indigenous homegarden agroforestry systems showed clear effects of management practices involving trees on soil fertility. The use of diverse tree species and other practices employed in agroforestry systems can represent alternative forms of increasing soil fertility and maintaining agricultural production, with important practical applications for the sustainability of tropical agriculture.


2020 ◽  
Vol 43 (16) ◽  
pp. 2445-2454
Author(s):  
Lucas Oliveira Santos ◽  
Larissa Alexandra Cardoso Moraes ◽  
Rafael Petineli ◽  
Luiz Gustavo Moretti ◽  
Adônis Moreira

2016 ◽  
Vol 47 (6) ◽  
pp. 706-719 ◽  
Author(s):  
A. Moreira ◽  
L. A. C. Moraes ◽  
T. Furlan ◽  
P. Cerezini ◽  
I. P. Bruno

2016 ◽  
Vol 5 (1) ◽  
pp. 1-10
Author(s):  
Karima Bouhafa ◽  
Lhoussaine Moughli ◽  
Amal Hadiddou ◽  
Khadija Bouchoufi ◽  
Abdelkader Sdouq

2020 ◽  
Vol 36 (3) ◽  
Author(s):  
Henrique Coutinho Junqueira Franco ◽  
Bernardo Melo Montes Nogueira Borges ◽  
Sergio Gustavo Quassi de Castro ◽  
Michele Xavier Vieira Megda ◽  
Marcio Mahmoud Megda ◽  
...  

Acid reactions and low available phosphorus in tropical soils limit forage yield. The aim was to evaluate soil chemical characteristics pH, P and Mg, forage nutritive values, critical soil and plant P levels and the residual effect of each source. The experiment was in a greenhouse with a Rhodic Haplustox, loam texture. Experimental design was a 5 x 4 factorial with five replicates which phosphate fertilizers were triple superphosphate, reactive rock phosphates Gafsa and Arad, and fused magnesium phosphate powder and coarse, applied at rates of 30, 60, 90 and 120 mg kg-1 P and a control treatment without P. The effectiveness of rock phosphates increased due to their residual effect. The coarse fused magnesium phosphate resulted in the lowest efficiency. The P critical level in soil and plant were 18 mg kg-1 and 2.4 g kg-1, respectively. The increase of phosphorus rates provided an increase in crude protein content.


Sign in / Sign up

Export Citation Format

Share Document