Laboratory optimization of surfactant imbibition in high temperature and high salinity fractured reservoir

Author(s):  
Renzhuo Wang ◽  
Baofeng Hou
Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4766
Author(s):  
Nanjun Lai ◽  
Yiping Wen ◽  
Xiaohu Wen ◽  
Wei He ◽  
Xiaosha Lin ◽  
...  

Asphalt and rigid particles have been chosen as the main blocking agent for solving the anti gas-channeling in high-temperature and high-salinity reservoirs. Particle size range and the concentration of suspending agent were firstly determined, and the influence factors on bonding effect between two materials in the high-temperature environment were then studied. An orthogonal experiment involving three factors (the content of rigid particles and asphalt, and softening point) and four levels was designed to investigate the impact order of the three factors on anti gas-channeling performance, and the optimization scheme has been identified. Results showed that the importance sequence of the factors was C rigid particles > C asphalt > softening point. By verifying the optimization scheme, the plugging ratio of this agent can reach more than 86.24% for 2 mm fractured core in high-temperature and high-salinity environments. The system was evenly distributed in the internal fractures, occupied the fractures completely, and had a certain height of accumulation. The micromorphology observations of the optimal scheme showed that the softened asphalt demonstrated its ‘amoeba’ characteristic and bonded with the surrounding rigid particles. The asphalt filled in the pore which was formed by bridging rigid particles to guarantee the blocking layer did not collapse or was carried by high-pressure N2-flow. This approach can potentially solve gas-channeling problems in reservoirs with serious environments.


2013 ◽  
Author(s):  
Fan Zhang ◽  
Desheng Ma ◽  
Qiang Wang ◽  
Youyi Zhu ◽  
Wenli Luo

2014 ◽  
Author(s):  
Amro S. Elhag ◽  
Yunshen Chen ◽  
Hao Chen ◽  
Prathima P. Reddy ◽  
Leyu Cui ◽  
...  

2021 ◽  
Author(s):  
S.A. Baloch ◽  
J.M. Leon ◽  
S.K. Masalmeh ◽  
D. Chappell ◽  
J. Brodie ◽  
...  

Abstract Over the last few years, ADNOC has systematically investigated a new polymer-based EOR scheme to improve sweep efficiency in high temperature and high salinity (HTHS) carbonate reservoirs in Abu Dhabi (Masalmeh et al., 2014). Consequently, ADNOC has developed a thorough de-risking program for the new EOR concept in these carbonate reservoirs. The de-risking program includes extensive laboratory experimental studies and field injectivity tests to ensure that the selected polymer can be propagated in the target reservoirs. A new polymer with high 2-acrylamido-tertiary-butyl sulfonic acid (ATBS) content was identified, based on extensive laboratory studies (Masalmeh, et al., 2019, Dupuis, et al., 2017, Jouenne 2020), and an initial polymer injectivity test (PIT) was conducted in 2019 at 250°F and salinity >200,000 ppm, with low H2S content (Rachapudi, et al., 2020, Leon and Masalmeh, 2021). The next step for ADNOC was to extend polymer application to harsher field conditions, including higher H2S content. Accordingly, a PIT was designed in preparation for a multi-well pilot This paper presents ADNOC's follow-up PIT, which expands the envelope of polymer flooding to dissolve H2S concentrations of 20 - 40 ppm to confirm injectivity at representative field conditions and in situ polymer performance. The PIT was executed over five months, from February 2021 to July 2021, followed by a chase water flood that will run until December 2021. A total of 108,392 barrels of polymer solution were successfully injected during the PIT. The extensive dataset acquired was used to assess injectivity and in-depth mobility reduction associated with the new polymer. Preliminary results from the PIT suggest that all key performance indicators have been achieved, with a predictable viscosity yield and good injectivity at target rates, consistent with the laboratory data. The use of a down-hole shut-in tool (DHSIT) to acquire pressure fall-off (PFO) data clarified the near-wellbore behaviour of the polymer and allowed optimisation of the PIT programme. This paper assesses the importance of water quality on polymer solution preparation and injection performance and reviews operational data acquired during the testing period. Polymer properties determined during the PIT will be used to optimise field and sector models and will facilitate the evaluation of polymer EOR in other giant, heterogeneous carbonate reservoirs, leading to improved recovery in ADNOC and Middle East reservoirs.


Sign in / Sign up

Export Citation Format

Share Document