Effect of composition of mono/di-hydroxy organic compounds and temperature on the aggregation behavior and physico-chemical properties of polyvinyl alcohol + TTAB mixture

Author(s):  
Sharmin Sultana ◽  
Malik Abdul Rub ◽  
Marzia Rahman ◽  
Shahed Rana ◽  
Mohammad Majibur Rahman ◽  
...  
2013 ◽  
Vol 11 (2) ◽  
pp. 799-813 ◽  
Author(s):  
Cécile Raillard ◽  
Valérie Héquet ◽  
Bifen Gao ◽  
Heyok Choi ◽  
Dionysios D. Dionysiou ◽  
...  

Abstract The photocatalytic oxidation of seven typical indoor volatile organic compounds (VOCs) is experimentally investigated using novel nanocrystalline TiO2 dip-coated catalysts. Not only the role of hydrophilicity of the reactants but also other physico-chemical properties and molecular descriptors are studied and related to kinetic and equilibrium constants. The main objective of this work consists in establishing simple relationships that will be useful to deepen the understanding of gas-phase heterogeneous photocatalytic mechanisms and for the prediction of degradation rates of these VOCs using an indoor air treatment process.


2021 ◽  
Author(s):  
shuang han ◽  
Juan Hong ◽  
Qingwei Luo ◽  
Hanbing Xu ◽  
Haobo Tan ◽  
...  

<p>Hygroscopic properties of 23 organic compounds with different physico-chemical properties including carboxylic acids, amino acids, sugars and sugar alcohols were measured using a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). We converted our experimental GF data of organics at 90% RH to κ to facilitate the comparison and we find that organic compounds with different molecular functionality present quite different hygroscopicity. Compounds with extra functional groups usually show higher hygroscopicity compared to their parental molecular compounds. Moreover, some compounds share the same molecular structure or functionality but vary differently in hygroscopicity. In general, the hygroscopicity of organics increase with functional groups in the following order: (-CH3/-NH2) < (-OH) < (-COOH/C=C/C=O). For highly soluble organics, the hygroscopicity decreases with molecular weight; while for slightly soluble organics which are not fully dissolved in aerosol droplets, their hygroscopicity can be divided into two categories. One is non-hygroscopic compounds, which may not fully deliquesce in the aerosol droplets. The other is moderate hygroscopic compounds, of which the hygroscopicity is mainly limited by their water solubility. Moreover, the hygroscopicity of organic compounds generally increased linearly with O:C ratios, although some of them have the same O:C ratio of but with different hygroscopicity. The experimental determined hygroscopicity are also compared with model predictions using the Extended Aerosol Inorganics Model (E-AIM) and the UManSysProp at 10-90% RH. Both models poorly represent the hygroscopic behavior of some organics, which may due to that the phase transition and intermolecular interactions are not considered in the simulations.</p>


1972 ◽  
Vol 5 (2) ◽  
pp. 289-290
Author(s):  
O. S. Lilenkov ◽  
B. M. Pugach ◽  
L. E. Utevskii ◽  
Z. Yu. Chereiskii

2015 ◽  
Vol 16 (3) ◽  
pp. 537-542 ◽  
Author(s):  
A. Abou El-Kheir ◽  
C. Popescu ◽  
S. Mowafi ◽  
M. Salama ◽  
H. El-Sayed

2020 ◽  
Vol 6 (8) ◽  
pp. 2043-2056 ◽  
Author(s):  
Amanda Larasati ◽  
Geoffrey D. Fowler ◽  
Nigel J. D. Graham

An adsorption and desorption study has been conducted using five organic compounds of different physico-chemical properties and four regenerant solutions to evaluate the feasibility of a novel on-site chemical regeneration of GAC.


2021 ◽  
Author(s):  
Shuang Han ◽  
Juan Hong ◽  
Qingwei Luo ◽  
Hanbing Xu ◽  
Haobo Tan ◽  
...  

Abstract. Hygroscopic properties of 23 organics including carboxylic acids, amino acids, sugars and alcohols were characterized using a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA). We show that hygroscopicity of organics varies widely with different functional groups and organics with additional functional groups are more hygroscopic. However, some compounds sharing the same molecular formula or functionality show quite different hygroscopicity, demonstrating that other physico-chemical properties may contribute to their hygroscopicity as well. If the organics are fully dissolved in water (solubility > 7× 10−1 g/ml), we found that their hygroscopicity is mainly controlled by their molecular weight. For the organics that are not fully dissolved in water (slightly soluble: 5 × 10−4 g/ml < solubility < 7 × 10−1 g/ml), we observed that some of them show no obvious water uptake, which probably due to that they may not deliquesce under our studied conditions up to 90 % RH. The other type of slightly soluble organics is moderate hygroscopic and the larger their solubility the higher their hygroscopicity. Moreover, the hygroscopicity of organics generally increased with O : C ratios, although this relationship is not linear. Hygroscopicity of organic compounds were also predicted by two thermodynamic models using the Extended Aerosol Inorganics Model (E-AIM) and UManSysProp. Both models do not consider phase transition and intermolecular interactions in the simulations and show poor representation of the hygroscopicity for most of the organics.


Sign in / Sign up

Export Citation Format

Share Document