scholarly journals Simulation of Water Supply and Demand in the Aral Sea Region

1992 ◽  
Vol 17 (2) ◽  
pp. 55-67 ◽  
Author(s):  
P. Raskin ◽  
E. Hansen ◽  
Z. Zhu ◽  
D. Stavisky
Author(s):  
Zheng Wang ◽  
Yue Huang ◽  
Tie Liu ◽  
Chanjuan Zan ◽  
Yunan Ling ◽  
...  

Lower reaches of the Amu Darya River Basin (LADB) is one of the typical regions which is facing the problem of water shortage in Central Asia. During the past decades, water resources demand far exceeds that supplied by the mainstream of the Amu Darya River, and has resulted in a continuous decrease in the amount of water flowing into the Aral Sea. Clarifying the dynamic relationship between the water supply and demand is important for the optimal allocation and sustainable management of regional water resources. In this study, the relationship and its variations between the water supply and demand in the LADB from the 1970s to 2010s were analyzed by detailed calculation of multi-users water demand and multi-sources water supply, and the water scarcity indices were used for evaluating the status of water resources utilization. The results indicated that (1) during the past 50 years, the average total water supply (TWS) was 271.88 × 108 m3/y, and the average total water demand (TWD) was 467.85 × 108 m3/y; both the volume of water supply and demand was decreased in the LADB, with rates of −1.87 × 108 m3/y and −15.59 × 108 m3/y. (2) percentages of the rainfall in TWS were increased due to the decrease of inflow from the Amu Darya River; percentage of agriculture water demand was increased obviously, from 11.04% in the 1970s to 44.34% in 2010s, and the water demand from ecological sector reduced because of the Aral Sea shrinking. (3) the supply and demand of water resources of the LADB were generally in an unbalanced state, and water demand exceeded water supply except in the 2010s; the water scarcity index decreased from 2.69 to 0.94, indicating the status changed from awful to serious water scarcity. A vulnerable balanced state has been reached in the region, and that water shortages remain serious in the future, which requires special attention to the decision-makers of the authority.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1522 ◽  
Author(s):  
Hadi Heidari ◽  
Mazdak Arabi ◽  
Mahshid Ghanbari ◽  
Travis Warziniack

Changes in climate, land use, and population can increase annual and interannual variability of socioeconomic droughts in water-scarce regions. This study develops a probabilistic approach to improve characterization of sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships under shifts in water supply and demand conditions. A mixture Gamma-Generalized Pareto (Gamma-GPD) model is proposed to enhance characterization of both the non-extreme and extreme socioeconomic droughts. Subsequently, the mixture model is used to determine sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships, return period, amplification factor, and drought risk. The application of the framework is demonstrated for the City of Fort Collins (Colorado, USA) water supply system. The water demand and supply time series for the 1985–2065 are estimated using the Integrated Urban water Model (IUWM) and the Soil and Water Assessment Tool (SWAT), respectively, with climate forcing from statistically downscaled CMIP5 projections. The results from the case study indicate that the mixture model leads to enhanced estimation of sub-annual socioeconomic drought frequencies, particularly for extreme events. The probabilistic approach presented in this study provides a procedure to update sub-annual socioeconomic drought IDF curves while taking into account changes in water supply and demand conditions.


Asian Survey ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 1116-1136
Author(s):  
Amit Ranjan

The widening gap between water supply and demand is the biggest threat and challenge before Pakistan. Of the available water, much is polluted. Both scarcity and pollution threaten the agriculture sector, on which the country’s economy depends.


Sign in / Sign up

Export Citation Format

Share Document