Dry bean cultivars with the potential for use in potato–dry bean crop rotation systems for managing root-knot nematodes in South Africa

2019 ◽  
Vol 36 (4) ◽  
pp. 315-317 ◽  
Author(s):  
Kgabo M Pofu ◽  
Phatu W Mashela ◽  
Sonja L Venter
EDIS ◽  
1969 ◽  
Vol 2004 (17) ◽  
Author(s):  
D. J. Zimet ◽  
J. L. Smith ◽  
R. A. Kinloch ◽  
Jimmy R. Rich ◽  
Timothy D. Hewitt

In Florida, nematicides are the most viable nematode management option because many growers only produce monoculture cotton and the low prices of other agronomic crops in the state make crop rotation expensive. The two primary nematicides used and recommended in Florida are Telone II and Temik 15G (Kinloch and Rich, 2000). This is EDIS document FE 318, a publication of the Department of Food and Resource Economics, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL. Published November 2004. https://edis.ifas.ufl.edu/fe318


2019 ◽  
Vol 15 (No. 1) ◽  
pp. 47-54 ◽  
Author(s):  
Mxolisi Mtyobile ◽  
Lindah Muzangwa ◽  
Pearson Nyari Stephano Mnkeni

The effects of tillage and crop rotation on the soil carbon, the soil bulk density, the porosity and the soil water content were evaluated during the 6<sup>th</sup> season of an on-going field trial at the University of Fort Hare Farm (UFH), South Africa. Two tillage systems; conventional tillage (CT) and no-till and crop rotations; maize (Zea mays L.)-fallow-maize (MFM), maize-fallow-soybean (Glycine max L.) (MFS); maize-wheat (Triticum aestivum L.)-maize (MWM) and  maize-wheat-soybean (MWS) were evaluated. The field experiment was a 2 × 4 factorial, laid out in a randomised complete design. The crop residues were retained for the no-till plots and incorporated for the CT plots, after each cropping season. No significant effects (P &gt; 0.05) of the tillage and crop rotation on the bulk density were observed. However, the values ranged from 1.32 to1.37 g/cm<sup>3</sup>. Significant interaction effects of the tillage and crop rotation were observed on the soil porosity (P &lt; 0.01) and the soil water content (P &lt; 0.05). The porosity for the MFM and the MWS, was higher under the CT whereas for the MWM and the MWS, it was higher under the no-till. However, the greatest porosity was under the MWS. Whilst the no-till significantly increased (P &lt; 0.05) the soil water content compared to the CT; the greatest soil water content was observed when the no-till was combined with the MWM rotations. The soil organic carbon (SOC) was increased more (P &lt; 0.05) by the no-till than the CT, and the MFM consistently had the least SOC compared with the rest of the crop rotations, at all the sampling depths (0–5, 5–10 and 10–20 cm). The soil bulk density negatively correlated with the soil porosity and the soil water content, whereas the porosity positively correlated with the soil water content. The study concluded that the crop rotations, the MWM and the MWS under the no-till coupled with the residue retention improved the soil porosity and the soil water content levels the most.


2002 ◽  
Vol 59 (4) ◽  
pp. 723-729 ◽  
Author(s):  
Elza Jacqueline Leite Meireles ◽  
Antonio Roberto Pereira ◽  
Paulo Cesar Sentelhas ◽  
Luis Fernando Stone ◽  
Francisco José Pfeilsticker Zimmermann

Simulation models are important tools for the analysis of cultivated systems to estimate the performance of crops in different environments. The CROPGRO- model (DSSAT) was calibrated and validated using Carioca bean (Phaseolus vulgaris L.) to estimate yield and the development of the crop, sown in three row spacings (0.4, 0.5, and 0.6 m) and two fertilization rates (300 and 500 kg ha-1 of 4-30-16 N-P-K), in Santo Antônio de Goiás, GO, Brazil. To calibrate the model a combination of the genetic coefficients that characterize the phenology and morphology of the dry bean crop was used to obtain the best possible fit between predicted and observed anthesis and physiological maturity dates, leaf area index (LAI), total dry matter (TDM), yield components, and grain yield for the 0.6 m row spacing. To test the model the experimental records of the 0.4 and 0.5 m row spacings were used. In both, calibration and test, the performance of the model was evaluated plotting observed and predicted values of LAI and TDM versus time, using the r², and the agreement index (d) as statistical criteria. In relation to yield and yield components the percent difference between the observed and predicted data was calculated. The model appeared to be adequate to simulate phenology, grain yield and yield components for the Carioca bean cultivar, related to different levels of fertilization and row spacing, either during calibration or the testing phase. During the test, the grain yield was overestimated by less than 15.4%, indicating a potential use for the calibrated model in assessing climatic risks in this region.


2016 ◽  
Vol 11 (50) ◽  
pp. 5100-5108
Author(s):  
Luiz Biscaia Ribeiro da Silva Andre ◽  
Sergio Lourenco de Freitas Paulo ◽  
Vinicius Demeneck Vieira Paulo ◽  
Dallacort Rivanildo ◽  
Rezende Roberto ◽  
...  

2020 ◽  
pp. 1433-1442
Author(s):  
Venâncio Salegua ◽  
Rob Melis ◽  
Deidré Fourie ◽  
Julia Sibiya ◽  
Cousin Musvosvi

Dry bean (Phaseolus vulgaris L.) is grown under an extensive range of agro-climatic conditions and is an essential source of protein and income globally. This study aimed to evaluate yield performance, stability, and bacterial brown spot (BBS) disease resistance of fourteen dark red kidney genotypes across environments in South Africa namely Carolina, Clarens, Cedara, Middelburg, Potchefstroom, and Warden. Analysis of variance (ANOVA), additive main effects and multiplicative interaction (AMMI) and the genotype plus genotype by environment interaction (GGE-biplot) analysis were used to evaluate grain yield performance, stability, and BBS disease resistance. The AMMI ANOVA revealed that mean squares for grain yield and BBS severity for the environment, genotype, and genotype by environment interaction were highly significant (P<0.001). Four interaction principal components (IPCA1 - 4) for grain yield and IPCA1 for BBS severity were highly significant (P<0.001, P<0.01). Genotype G12 showed broad adaptation for both high grain yield and low BBS severity across the six environments, while genotypes G08, G06, G03, G02, G05, and G04 had specific adaption for high grain yield and low BBS severity. These genotypes recorded grain yield above the grand mean and the best check cultivar, both with 1.43 t ha-1 , and BBS severity below the grand mean (31.90%) and the best check (48.89%). The genotypes identified with either broad or specific adaptation can be released in the environments they are adapted to, or used as parents in breeding programmes aiming to improve grain yield and BBS disease resistance of dry bean for farmers in South Africa.


Sign in / Sign up

Export Citation Format

Share Document