scholarly journals Cost of environmental flow during water scarcity in the arid Huasco River basin, northern Chile

2014 ◽  
Vol 59 (3-4) ◽  
pp. 700-712 ◽  
Author(s):  
P. Wagnitz ◽  
J. Núñez ◽  
L. Ribbe
2019 ◽  
Vol 11 (21) ◽  
pp. 5958 ◽  
Author(s):  
Yu ◽  
Jia ◽  
Wu ◽  
Wu ◽  
Xu ◽  
...  

The construction of hydropower stations is not without controversy as they have a certain degree of impact on the ecological environment. Moreover, the water footprint and its cumulative effects on the environment (The relationship between the degree of hydropower development and utilization in the basin and the environment) of the development and utilization of cascade hydropower stations are incompletely understood. In this paper, we calculate the evaporated water footprint (EWF, water evaporated from reservoirs) and the product water footprint of hydropower stations (PWF, water consumption per unit of electricity production), and the blue water scarcity (BWS, the ratio of the total blue water footprint to blue water availability) based on data from 19 selected hydropower stations in the Yalong River Basin, China. Results show that: (a) the EWFs in established, ongoing, proposed, and planning phases of 19 hydropower stations are 243, 123, 59, and 42 Mm3, respectively; (b) the PWF of 19 hydropower stations varies between 0.01 and 4.49 m3GJ−1, and the average PWF is 1.20 m3GJ−1. These values are quite small when compared with hydropower stations in other basins in the world, and the difference in PWF among different hydropower stations is mainly derived from energy efficiency factor; (c) all the BWS in the Yalong River Basin are below 100% (low blue water scarcity), in which the total blue water footprint is less than 20% of the natural flow, and environmental flow requirements are met. From the perspective of the water footprint method, the cumulative environmental effects of hydropower development and utilization in the Yalong River Basin will not affect the local environmental flow requirements.


Author(s):  
Bernardo Mazzanti ◽  
Isabella Bonamini ◽  
Gaia Checcucci ◽  
Lucia Fiumi ◽  
Francesco Consumi ◽  
...  

The Pilot Arno Water Accounts (PAWA) project was recently funded under the Call “Preparatory Action on Development of Prevention Activities to Halt Desertification in Europe” of the Directorate- General for the Environment of the European Commission to promote preventive actions to manage water scarcity and drought phenomena and to meet one of the main goals under European environmental legislation: the effective and sustainable management of water resources. The partners involved in the implementation of the PAWA project (ISPRA, Arno River Basin Authority, SEMIDE/EMWIS) will carry out a pilot initiative in the Arno River Basin, an area severely affected by water scarcity and droughts phenomena and characterized by water withdrawals and land use changes. In the area a large experience about water balance application was already performed, for example in the context of the Water Framework Directive Common Implementation Strategy. Moving from this knowledge, the objective of the project is the definition of water accounting processing based on the UN System of Environmental Economic Accounts for Water, with the final goal to optimize a list of effective measures to face water scarcity phenomena. By the end of project (March 2015) the PAWA partnership aims at preparing physical water stock accounts, using the best available data resulting from field measurements or models, on a monthly step for the period 1999–201. The quality of each dataset will be assessed; tables, maps and graphs will be produced as outputs of the projects in cooperation with local stakeholders and players of the water sector. Furthermore, water accounts will be used to assess the potential impact of various measures related to water resource efficient exploitation in the most vulnerable sub-basins; their tolerability will be tested during workshops with stakeholders. Finally, water efficiency targets for potential future integration into Arno River Basin Management Plan will be identified.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1605
Author(s):  
Chaoxing Sun ◽  
Xiong Zhou

The assessment of future climate changes on drought and water scarcity is extremely important for water resources management. A modeling system is developed to study the potential status of hydrological drought and water scarcity in the future, and this modeling system is applied to the Jinghe River Basin (JRB) of China. Driven by high-resolution climate projections from the Regional Climate Modeling System (RegCM), the Variable Infiltration Capacity model is employed to produce future streamflow projections (2020–2099) under two Representative Concentration Pathway (RCP) scenarios. The copula-based method is applied to identify the correlation between drought variables (i.e., duration and severity), and to further quantify their joint risks. Based on a variety of hypothetical water use scenarios in the future, the water scarcity conditions including extreme cases are estimated through the Water Exploitation Index Plus (WEI+) indicator. The results indicate that the joint risks of drought variables at different return periods would decrease. In detail, the severity of future drought events would become less serious under different RCP scenarios when compared with that in the historical period. However, considering the increase in water consumption in the future, the water scarcity in JRB may not be alleviated in the future, and thus drought assessment alone may underestimate the severity of future water shortage. The results obtained from the modeling system can help policy makers to develop reasonable future water-saving planning schemes, as well as drought mitigation measures.


Author(s):  
Zhihui Li ◽  
Xiangzheng Deng ◽  
Aisha Arowolo ◽  
Qunou Jiang ◽  
Haiming Yan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document