scholarly journals Hydrological model parameter (in)stability – “crash testing” the HBV model under contrasting flood seasonality conditions

2018 ◽  
Vol 63 (7) ◽  
pp. 991-1007 ◽  
Author(s):  
Klaus Vormoor ◽  
Maik Heistermann ◽  
Axel Bronstert ◽  
Deborah Lawrence
2014 ◽  
Vol 18 (6) ◽  
pp. 2393-2413 ◽  
Author(s):  
H. Sellami ◽  
I. La Jeunesse ◽  
S. Benabdallah ◽  
N. Baghdadi ◽  
M. Vanclooster

Abstract. In this study a method for propagating the hydrological model uncertainty in discharge predictions of ungauged Mediterranean catchments using a model parameter regionalization approach is presented. The method is developed and tested for the Thau catchment located in Southern France using the SWAT hydrological model. Regionalization of model parameters, based on physical similarity measured between gauged and ungauged catchment attributes, is a popular methodology for discharge prediction in ungauged basins, but it is often confronted with an arbitrary criterion for selecting the "behavioral" model parameter sets (Mps) at the gauged catchment. A more objective method is provided in this paper where the transferrable Mps are selected based on the similarity between the donor and the receptor catchments. In addition, the method allows propagating the modeling uncertainty while transferring the Mps to the ungauged catchments. Results indicate that physically similar catchments located within the same geographic and climatic region may exhibit similar hydrological behavior and can also be affected by similar model prediction uncertainty. Furthermore, the results suggest that model prediction uncertainty at the ungauged catchment increases as the dissimilarity between the donor and the receptor catchments increases. The methodology presented in this paper can be replicated and used in regionalization of any hydrological model parameters for estimating streamflow at ungauged catchment.


2021 ◽  
Author(s):  
Thea Roksvåg ◽  
Ingelin Steinsland ◽  
Kolbjørn Engeland

Abstract. We present a Bayesian geostatistical model for mean annual runoff that incorporates simulations from a process-based hydrological model by treating the simulations as a covariate in the statistical model. The regression coefficient of the covariate is modeled as a spatial field such that the relationship between the covariate (simulations from a hydrological model) and the response variable (observed mean annual runoff) is allowed to vary within the study area. Hence, it is a spatially varying coefficient. A preprocessing step for including short records in the modeling is also suggested and we obtain a model that can exploit several data sources by using state of the art statistical methods. The geostatistical model is evaluated by predicting mean annual runoff for 1981–2010 for 127 catchments in Norway based on observations from 411 catchments. Simulations from the process-based HBV model on a 1 km × 1 km grid are used as input. We found that on average the proposed approach outperformed a purely process-based approach (HBV) when predicting runoff for ungauged and partially gauged catchments: The reduction in RMSE compared to the HBV model was 20 % for ungauged catchments and 58 % for partially gauged catchments, where the latter is due to the preprocessing step. For ungauged catchments the proposed framework also outperformed a purely geostatistical method with a 10 % reduction in RMSE compared to the geostatistical method. For partially gauged catchments however, purely geostatistical methods performed equally well or slightly better than the proposed combination approach. It is not surprising that purely geostatistical methods perform well in areas where we have data. In general, we expect the proposed approach to outperform geostatistics in areas where the data availability is low to moderate.


Author(s):  
Jiuyuan Huo ◽  
Yaonan Zhang ◽  
Lihui Luo ◽  
Yinping Long ◽  
Zhengfang He ◽  
...  

How to make the existing models from different disciplines effectively interoperate and integrate is one of the primary challenges for scientists and decision-makers. Heihe river Open Modeling Environment (HOME) provides a convenient model coupling platform that enables researchers concentrate on the theory and applications of ecological and hydrological watershed models. The model parameter optimization is an important component and key step that links models and simulation of watershed. In this paper, through integration modules of existing models, an improved ABC algorithm (ORABC) based on optimization strategy and reservation strategy of the best individuals was introduced into HOME as a hydrological model parameter optimization module, and coupled with the Xinanjiang hydrological model to complete automatically task of model parameter optimization. The runoff simulation experiments in Heihe river watershed were taken to verify the parameter optimization in HOME, and the simulation results testified the efficiency and effectiveness of the method. It can significantly improve simulation accuracy and efficiency of hydrological and ecological models, and promote the scientific researches for watershed issues.


2012 ◽  
Vol 8 ◽  
pp. 38-43
Author(s):  
Subarna Shrestha ◽  
Knut Alfredsen

Ungauged basins are challenges for hydrological study, the key discipline to analyse for planning and the operation of water resources projects. Several river basins have no hydrologic measurements where there is feasibility of promising water resources schemes. This study deals with use of the Hydrologiska Byråns avdeling for Vattenbalans (HBV) hydrological model to generate stream flow time series and other hydrological variables. The model was calibrated successfully in the Sanghutar catchment of the Likhu River of Nepal, and then used to simulate runoff series at the proposed intake site of Likhu HEP, where the gauging station has not been installed. The model can be used to generate runoff of other ungauged catchments which have similar catchment characteristics.DOI: http://dx.doi.org/10.3126/hn.v8i0.4910 Hydro Nepal: Journal of Water, Energy and Environment Issue No. 8, 2011 JanuaryPage: 38-43Uploaded date: 17 June, 2011


2020 ◽  
Vol 24 (6) ◽  
pp. 3331-3359 ◽  
Author(s):  
Petra Hulsman ◽  
Hessel C. Winsemius ◽  
Claire I. Michailovsky ◽  
Hubert H. G. Savenije ◽  
Markus Hrachowitz

Abstract. Limited availability of ground measurements in the vast majority of river basins world-wide increases the value of alternative data sources such as satellite observations in hydrological modelling. This study investigates the potential of using remotely sensed river water levels, i.e. altimetry observations, from multiple satellite missions to identify parameter sets for a hydrological model in the semi-arid Luangwa River basin in Zambia. A distributed process-based rainfall–runoff model with sub-grid process heterogeneity was developed and run on a daily timescale for the time period 2002 to 2016. As a benchmark, feasible model parameter sets were identified using traditional model calibration with observed river discharge data. For the parameter identification using remote sensing, data from the Gravity Recovery and Climate Experiment (GRACE) were used in a first step to restrict the feasible parameter sets based on the seasonal fluctuations in total water storage. Next, three alternative ways of further restricting feasible model parameter sets using satellite altimetry time series from 18 different locations along the river were compared. In the calibrated benchmark case, daily river flows were reproduced relatively well with an optimum Nash–Sutcliffe efficiency of ENS,Q=0.78 (5/95th percentiles of all feasible solutions ENS,Q,5/95=0.61–0.75). When using only GRACE observations to restrict the parameter space, assuming no discharge observations are available, an optimum of ENS,Q=-1.4 (ENS,Q,5/95=-2.3–0.38) with respect to discharge was obtained. The direct use of altimetry-based river levels frequently led to overestimated flows and poorly identified feasible parameter sets (ENS,Q,5/95=-2.9–0.10). Similarly, converting modelled discharge into water levels using rating curves in the form of power relationships with two additional free calibration parameters per virtual station resulted in an overestimation of the discharge and poorly identified feasible parameter sets (ENS,Q,5/95=-2.6–0.25). However, accounting for river geometry proved to be highly effective. This included using river cross-section and gradient information extracted from global high-resolution terrain data available on Google Earth and applying the Strickler–Manning equation to convert modelled discharge into water levels. Many parameter sets identified with this method reproduced the hydrograph and multiple other signatures of discharge reasonably well, with an optimum of ENS,Q=0.60 (ENS,Q,5/95=-0.31–0.50). It was further shown that more accurate river cross-section data improved the water-level simulations, modelled rating curve, and discharge simulations during intermediate and low flows at the basin outlet where detailed on-site cross-section information was available. Also, increasing the number of virtual stations used for parameter selection in the calibration period considerably improved the model performance in a spatial split-sample validation. The results provide robust evidence that in the absence of directly observed discharge data for larger rivers in data-scarce regions, altimetry data from multiple virtual stations combined with GRACE observations have the potential to fill this gap when combined with readily available estimates of river geometry, thereby allowing a step towards more reliable hydrological modelling in poorly gauged or ungauged basins.


Sign in / Sign up

Export Citation Format

Share Document