virtual station
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 17)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Mohammad Karamouz ◽  
Elham Ebrahimi ◽  
Arash Ghomlaghi

Abstract Soil moisture represents many attributes of the geo-hydrological cycle and the climate system. Citizen science through social media as an emerging tool could be utilized to collect soil moisture data. A pilot study area was selected in Shahriar, Iran. A user interface and a sampling process (use of citizen science by subscribers) were designed to analyze the subjective and gravimetric soil moisture data. Furthermore, explanatory moisture condition (EMC), a new initiative to consider land use in soil moisture information from vegetation cover, was evaluated. A statistical artificial neural network was used for quantifying subjective data, and soil moisture layouts were produced by utilizing the ordinary kriging (OK) method. For cross-validating, the land surface temperature data from the MODIS satellite were retrieved. A platform for the region with 200 m grids resolution to collect daily soil moisture at eight ungauged stations is proposed to utilize subjective data from the subscribers and cross-validated with satellite data. A virtual station at the centroid of the pervious part of the study area was selected as a reference station for data collection daily or weekly to generate soil moisture time series. The results showed a high potential of utilizing satellite and citizen science data for real-time estimation of scarce soil moisture data in developing regions.


2021 ◽  
Vol 13 (12) ◽  
pp. 2272
Author(s):  
Jinghua Xiong ◽  
Shenglian Guo ◽  
Jiabo Yin

Remotely sensing data have advantages in filling spatiotemporal gaps of in situ observation networks, showing potential application for monitoring floods in data-sparse regions. By using the water level retrievals of Jason-2/3 altimetry satellites, this study estimates discharge at a 10-day timescale for the virtual station (VS) 012 and 077 across the midstream Yangtze River Basin during 2009–2016 based on the developed Manning formula. Moreover, we calibrate a hybrid model combined with Gravity Recovery and Climate Experiment (GRACE) data, by coupling the GR6J hydrological model with a machine learning model to simulate discharge. To physically capture the flood processes, the random forest (RF) model is employed to downscale the 10-day discharge into a daily scale. The results show that: (1) discharge estimates from the developed Manning formula show good accuracy for the VS012 and VS077 based on the improved Multi-subwaveform Multi-weight Threshold Retracker; (2) the combination of the GR6J and the LSTM models substantially improves the performance of the discharge estimates solely from either the GR6J or LSTM models; (3) RF-downscaled daily discharge demonstrates a general consistency with in situ data, where NSE/KGE between them are as high as 0.69/0.83. Our approach, based on multi-source remotely sensing data and machine learning techniques, may benefit flood monitoring in poorly gauged areas.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6358
Author(s):  
Wojciech Kaczmarek ◽  
Jarosław Panasiuk ◽  
Szymon Borys ◽  
Patryk Banach

The paper presents the possibility of using the Kinect v2 module to control an industrial robot by means of gestures and voice commands. It describes the elements of creating software for off-line and on-line robot control. The application for the Kinect module was developed in the C# language in the Visual Studio environment, while the industrial robot control program was developed in the RAPID language in the RobotStudio environment. The development of a two-threaded application in the RAPID language allowed separating two independent tasks for the IRB120 robot. The main task of the robot is performed in Thread No. 1 (responsible for movement). Simultaneously, Thread No. 2 ensures continuous communication with the Kinect system and provides information about the gesture and voice commands in real time without any interference in Thread No. 1. The applied solution allows the robot to work in industrial conditions without the negative impact of the communication task on the time of the robot’s work cycles. Thanks to the development of a digital twin of the real robot station, tests of proper application functioning in off-line mode (without using a real robot) were conducted. The obtained results were verified on-line (on the real test station). Tests of the correctness of gesture recognition were carried out, and the robot recognized all programmed gestures. Another test carried out was the recognition and execution of voice commands. A difference in the time of task completion between the actual and virtual station was noticed; the average difference was 0.67 s. The last test carried out was to examine the impact of interference on the recognition of voice commands. With a 10 dB difference between the command and noise, the recognition of voice commands was equal to 91.43%. The developed computer programs have a modular structure, which enables easy adaptation to process requirements.


2020 ◽  
Author(s):  
Catherine JS Kim ◽  
Chris Roelfsema ◽  
Sophie Dove ◽  
Ove Hoegh-Guldberg

AbstractEl Niño Southern Oscillation global coral bleaching events are increasing in frequency; however, the severity of bleaching is not geographically uniform. There were two major objectives of the present project: 1) assess the state of reefs and coral health at several sites and 2) explore water quality and climate change impacts on Timorese reefs. The impacts of climate change (principally by following coral mortality) were surveyed on coral reefs before and after the 2016–2017 underwater heatwave, using temperature loggers deployed between surveys which were compared to Coral Reef Watch (CRW) experimental virtual station sea surface temperature (SST). CRW is an important and widely used tool; however, we found the SST was significantly warmer (> 1°C) than in situ temperature during the austral summer accruing 5.79 degree heating weeks. In situ temperature showed no accumulation. Change in coral cover between surveys was attributed to reef heterogeneity. There were significant differences in coral cover, coral diversity, and nutrient concentrations between site and depth and a low prevalence of disease recorded in both years. The comparison of temperature and SST indicate that bleaching stress in Timor-Leste is potentially mitigated by seasonal and oceanographic dynamics. This is corroborated by Timor-Leste’s location within the Indonesian ThroughFlow. Timor-Leste is a climate refugium and the immediate conservation work lies in the management of localized anthropogenic impacts on coral reefs such as sedimentation and fishing.


Author(s):  
Wojciech Kaczmarek ◽  
Jarosław Panasiuk ◽  
Szymon Borys ◽  
Patryk Banach

The paper presents the possibility of using KINECT v2 module to control an industrial robot by means of gestures and voice commands. It describes elements of creating software for off-line and on-line robot control. The application for KINECT module was developed in C# language in Visual Studio environment, while the industrial robot control program was developed in RAPID language in RobotStudio environment. The development of a two-threaded application in RAPID language allowed to separate two independent tasks for the IRB120 robot. The main task of the robot is performed in thread no. 1 (responsible for movement). Simultaneously working thread no. 2 ensures continuous communication with the KINECT system and provides information about the gesture and voice commands in real time without any interference in thread no. 1. The applied solution allows the robot to work in industrial conditions without negative impact of communication task on the time of robot’s work cycles. Thanks to the development of a digital twin of the real robot station, tests of proper application functioning in off-line mode (without using a real robot) were conducted. Obtained results were verified online (on the real test station). Tests of correctness of gesture recognition were carried out, the robot recognized all programmed gestures. Another test carried out was the recognition and execution of voice commands. A difference in the time of task completion between the actual and virtual station was noticed - the average difference was 0.67 s. The last test carried out was to examine the impact of interference on the recognition of voice commands. With a 10dB difference between the command and noise, the recognition of voice commands was equal to 91.43%. The developed computer programs have a modular structure, which enables easy adaptation to process requirements.


2020 ◽  
Vol 12 (17) ◽  
pp. 2693
Author(s):  
Daniel Scherer ◽  
Christian Schwatke ◽  
Denise Dettmering ◽  
Florian Seitz

Despite increasing interest in monitoring the global water cycle, the availability of in situ gauging and discharge time series is decreasing. However, this lack of ground data can partly be compensated for by using remote sensing techniques to observe river stages and discharge. In this paper, a new approach for estimating discharge by combining water levels from multi-mission satellite altimetry and surface area extents from optical imagery with physical flow equations at a single cross-section is presented and tested at the Lower Mississippi River. The datasets are combined by fitting a hypsometric curve, which is then used to derive the water level for each acquisition epoch of the long-term multi-spectral remote sensing missions. In this way, the chance of detecting water level extremes is increased and a bathymetry can be estimated from water surface extent observations. Below the minimum hypsometric water level, the river bed elevation is estimated using an empirical width-to-depth relationship in order to determine the final cross-sectional geometry. The required flow gradient is derived from the differences between virtual station elevations, which are computed in a least square adjustment from the height differences of all multi-mission satellite altimetry data that are close in time. Using the virtual station elevations, satellite altimetry data from multiple virtual stations and missions are combined to one long-term water level time series. All required parameters are estimated purely based on remote sensing data, without using any ground data or calibration. The validation at three gauging stations of the Lower Mississippi River shows large deviations primarily caused by the below average width of the predefined cross-sections. At 13 additional cross-sections situated in wide, uniform, and straight river sections nearby the gauges the Normalized Root Mean Square Error (NRMSE) varies between 10.95% and 28.43%. The Nash-Sutcliffe Efficiency (NSE) for these targets is in a range from 0.658 to 0.946.


2020 ◽  
Vol 24 (6) ◽  
pp. 3331-3359 ◽  
Author(s):  
Petra Hulsman ◽  
Hessel C. Winsemius ◽  
Claire I. Michailovsky ◽  
Hubert H. G. Savenije ◽  
Markus Hrachowitz

Abstract. Limited availability of ground measurements in the vast majority of river basins world-wide increases the value of alternative data sources such as satellite observations in hydrological modelling. This study investigates the potential of using remotely sensed river water levels, i.e. altimetry observations, from multiple satellite missions to identify parameter sets for a hydrological model in the semi-arid Luangwa River basin in Zambia. A distributed process-based rainfall–runoff model with sub-grid process heterogeneity was developed and run on a daily timescale for the time period 2002 to 2016. As a benchmark, feasible model parameter sets were identified using traditional model calibration with observed river discharge data. For the parameter identification using remote sensing, data from the Gravity Recovery and Climate Experiment (GRACE) were used in a first step to restrict the feasible parameter sets based on the seasonal fluctuations in total water storage. Next, three alternative ways of further restricting feasible model parameter sets using satellite altimetry time series from 18 different locations along the river were compared. In the calibrated benchmark case, daily river flows were reproduced relatively well with an optimum Nash–Sutcliffe efficiency of ENS,Q=0.78 (5/95th percentiles of all feasible solutions ENS,Q,5/95=0.61–0.75). When using only GRACE observations to restrict the parameter space, assuming no discharge observations are available, an optimum of ENS,Q=-1.4 (ENS,Q,5/95=-2.3–0.38) with respect to discharge was obtained. The direct use of altimetry-based river levels frequently led to overestimated flows and poorly identified feasible parameter sets (ENS,Q,5/95=-2.9–0.10). Similarly, converting modelled discharge into water levels using rating curves in the form of power relationships with two additional free calibration parameters per virtual station resulted in an overestimation of the discharge and poorly identified feasible parameter sets (ENS,Q,5/95=-2.6–0.25). However, accounting for river geometry proved to be highly effective. This included using river cross-section and gradient information extracted from global high-resolution terrain data available on Google Earth and applying the Strickler–Manning equation to convert modelled discharge into water levels. Many parameter sets identified with this method reproduced the hydrograph and multiple other signatures of discharge reasonably well, with an optimum of ENS,Q=0.60 (ENS,Q,5/95=-0.31–0.50). It was further shown that more accurate river cross-section data improved the water-level simulations, modelled rating curve, and discharge simulations during intermediate and low flows at the basin outlet where detailed on-site cross-section information was available. Also, increasing the number of virtual stations used for parameter selection in the calibration period considerably improved the model performance in a spatial split-sample validation. The results provide robust evidence that in the absence of directly observed discharge data for larger rivers in data-scarce regions, altimetry data from multiple virtual stations combined with GRACE observations have the potential to fill this gap when combined with readily available estimates of river geometry, thereby allowing a step towards more reliable hydrological modelling in poorly gauged or ungauged basins.


2020 ◽  
Author(s):  
Jérôme Benveniste ◽  
Salvatore Dinardo ◽  
Giovanni Sabatino ◽  
Marco Restano ◽  
Américo Ambrózio

<p>The scope of this presentation is to feature the G-POD SARvatore service to users for the exploitation of CryoSat-2 and Sentinel-3 data, which was designed and developed by the Altimetry Team in the R&D division at ESA-ESRIN. The G-POD service coined SARvatore (SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation) is a web platform that allows any scientist to process on-line, on-demand and with user-selectable configuration CryoSat-2 SAR/SARin and Sentinel-3 SAR data, from L1A (FBR) data products up to SAR/SARin Level-2 geophysical data products. <br>The G-POD graphical interface allows users to select a geographical area of interest within the time-frame related to the Cryosat-2 SAR/SARin FBR and Sentinel-3 L1A data products availability in the service catalogue. The processor prototype is versatile, allowing users to customize and to adapt the processing according to their specific requirements by setting a list of configurable options. Pre-defined processing configurations (Official CryoSat-2, Official Sentinel-3, Open Ocean, Coastal Zone, Inland Water (20Hz & 80Hz), Ice and Sea-Ice) are available. After the task submission, users can follow, in real time, the status of the processing. The output data products are generated in standard NetCDF format, therefore being compatible with the multi-mission “Broadview Radar Altimetry Toolbox” (BRAT, http://www.altimetry.info) and typical tools.<br>Initially, the processing was designed and optimized uniquely for open ocean studies. It was based on the SAMOSA model developed for the Sentinel-3 Ground Segment. However, since June 2015, the SAMOSA+ retracker is available as a dedicated retracker for coastal zone, inland water and sea-ice/ice-sheet. A new retracker (SAMOSA++) has been recently developed and will be made available in the future. The scope is to maximize the exploitation of CryoSat-2 and Sentinel-3 data over all surfaces providing user with specific processing options not available in the default processing chains.<br>Recent improvements include: 1) A Join & Share Forum to allow users to post questions and report issues (https://wiki.services.eoportal.org/tiki-custom_home.php); 2) A data repository to better support the growing Altimetry Community avoiding the redundant reprocessing of already processed data (https://wiki.services.eoportal.org/tiki-index.php?page=SARvatore+Data+Repository&highlight=repository); 3) A new function in the GUI allowing users to compute the geodetic distance between selected points on the map; 4) A new function in the GUI to filter the products search to a specific RON (Relative Orbit Number) and to a specific pass direction (Ascending or Descending). Furthermore, users will find in the folder SUM_RESDIR of the output data package a short summary report with information on the products that have not been processed and instructions on how to eventually try to re-process the missing data.<br>To respond to the request of hydrologists, and simulate data that a river gauge would provide, SARvatore  will soon include a post-processing service to convert water level estimates in L2 data to virtual station water level values,  which are typically required by hydrologists. Validation of SARvatore data over river targets will be presented to demonstrate the potential of both the SAMOSA+/++ retrackers and the innovative processing configurations not available in the default CryoSat-2 and Sentinel-3 processing chains.</p>


Sign in / Sign up

Export Citation Format

Share Document