Liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels

2018 ◽  
Vol 34 (15) ◽  
pp. 1809-1829 ◽  
Author(s):  
Diptak Bhattacharya
Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 787 ◽  
Author(s):  
Wook-Sang Jeon ◽  
Ashutosh Sharma ◽  
Jae Pil Jung

Liquid metal embrittlement (LME) in Zn-coated steels is a serious issue in automotive design. The risk of rising LME surface cracks in resistance spot welding (RSW) of Zn-coated high strength steels has triggered significant research activities across the globe. This paper presents a state-of-the-art review of the various phenomena and issues related to LME during RSW. Various aspects of LME surface cracks have been described in this review, focusing on the macro- and microscopic features of LME, spot weld cracks, the sensitivity of the LME cracks towards surface locations, welding conditions, and susceptibility to high strength and galvanized steels. We also focus on the effects of various processing factors, such as temperature, stress, microstructure, and the nature of the galvanized layer, related to studies with actual spot welds LME cracks. Finally, we summarize the possible mechanisms of embrittlement and the remedies for minimizing LME cracks, with suitable guidelines to suppress surface cracks during RSW.


Author(s):  
Yu-Jun Xia ◽  
Yan Shen ◽  
Lang Zhou ◽  
Yong-Bing Li

Abstract Weld expulsion is one of the most common welding defects during resistance spot welding (RSW) process especially for high strength steels (HSS). In order to control and eventually eliminate weld expulsion in production, accurate assessment of the expulsion severity should be the first step and is urgently required. Among the existing methods, real-time monitoring of RSW-related process signals has become a promising approach to actualize the online evaluation of weld expulsion. However, the inherent correlation between the process signals and the expulsion intensity is still unclear. In this work, a commonly used process signal, namely the electrode displacement and its instantaneous behavior when expulsion occurs are systematically studied. Based upon experiments with various electrodes and workpieces, a nonlinear relation between the weight of expelled metal and the sudden displacement drop accompanied by the occurrence of weld expulsion is observed, which is mainly influenced by electrode tip geometry but not by material strength or sheet thickness. The intrinsic relationship between this specific signal feature and the magnitude of expulsion is further explored through geometrical analysis, and a modified analytical model for online expulsion evaluation is finally proposed. It is shown that the improved model could be applied to domed electrodes with different tip geometries and varying workpieces ranging from low carbon steel to HSS. The error of expulsion estimation could be limited within ±20.4 mg (±2σ) at a 95% confidence level. This study may contribute to the online control of weld expulsion to the minimum level.


Sign in / Sign up

Export Citation Format

Share Document