A simple method for making transverse cleavages of diatom frustules for scanning electron microscopy and its application

2021 ◽  
pp. 1-7
Author(s):  
Nagisa Mayama ◽  
Shigeki Mayama
2021 ◽  
Author(s):  
Rowan Mclachlan ◽  
Ashruti Patel ◽  
Andrea G Grottoli

Coral morphology is influenced by genetics, the environment, or the interaction of both, and thus is highly variable. This protocol outlines a non-destructive and relatively simple method for measuring Scleractinian coral sub-corallite skeletal structures (such as the septa length, theca thickness, and corallite diameter, etc.) using digital images produced as a result of digital microscopy or from scanning electron microscopy. This method uses X and Y coordinates of points placed onto photomicrographs to automatically calculate the length and/or diameter of a variety of sub-corallite skeletal structures in the Scleractinian coral Porites lobata. However, this protocol can be easily adapted for other coral species - the only difference may be the specific skeletal structures that are measured (for example, not all coral species have a pronounced columella or pali, or even circular corallites). This protocol is adapted from the methods described in Forsman et al. (2015) & Tisthammer et al. (2018). There are 4 steps to this protocol: 1) Removal of Organic Tissue from Coral Skeletons 2) Imaging of Coral Skeletons 3) Photomicrograph Image Analysis 4) Calculation of Corallite Microstructure Size This protocol was written by Dr. Rowan McLachlan and was reviewed by Ashruti Patel and Dr. Andréa Grottoli. Acknowledgments Leica DMS 1000 and Scanning Electron Microscopy photomicrographs used in this protocol were acquired at the Subsurface Energy Materials Characterization and Analysis Laboratory (SEMCAL), School of Earth Sciences at The Ohio State University, Ohio, USA. I would like to thank Dr. Julie Sheets, Dr. Sue Welch, and Dr. David Cole for training me on the use of these instruments.


2012 ◽  
Vol 535-537 ◽  
pp. 280-283 ◽  
Author(s):  
Hao Ran An ◽  
Feng Shi Cai ◽  
Xue Wei Wang ◽  
Zhi Hao Yuan

Different morphology CuO nanostructures, including platelets, flower-like were simply synthesized at 350 °C controlled by droplet on hydrophobic substrate. This is a simple method which does not require any template, catalyst, or surfactant but can control the morphology of CuO from platelets to flowerlike. The morphologies are strongly dependent on the volume of droplet. Scanning electron microscopy (SEM), Optical microscope and X-ray diffraction (XRD) were used to observe the morphology, crystallinity, and chemical composition of the CuO structures. Growth mechanisms for shape selective CuO synthesis were proposed based on these results.


1971 ◽  
Vol 17 (6) ◽  
pp. 822-823 ◽  
Author(s):  
David J. Bibel ◽  
John W. Lawson

A simple procedure, using Millipore filters, for the observation of L-form colonies of streptococci by scanning electron microscopy is described.


2014 ◽  
Vol 215 ◽  
pp. 158-162
Author(s):  
Liudmila E. Bykova ◽  
V.G. Myagkov ◽  
I.A. Tambasov ◽  
O.A. Bayukov ◽  
Victor S. Zhigalov ◽  
...  

A simple method for obtaining ZnO-Fe3O4 nanocomposites using solid-state reaction Zn + 3Fe2O3 ZnO + 2Fe3O4 is suggested. An analysis of the characteristics and properties of ZnO-Fe3O4 nanocomposites was carried out by a combination of structural and physical methods (X-ray diffraction, scanning electron microscopy, photoelectron spectroscopy, Mössbauer measurements, X-ray fluorescent analysis, and magnetic measurements). The magnetization of the hybrid ZnO-Fe3O4 films is equal to 440 emu/cm3. The resulting Fe3O4 nanoparticles are surrounded by a ZnO shell and have sizes ranging between 20 and 40 nm.


Sign in / Sign up

Export Citation Format

Share Document