Projected Extreme Heat Stress in Northern Australia and the Implications for Development Policy

Author(s):  
Julian Bolleter ◽  
Bill Grace ◽  
Sarah Foster ◽  
Anthony Duckworth ◽  
Paula Hooper
2018 ◽  
Vol 256-257 ◽  
pp. 196-206 ◽  
Author(s):  
Ting Sun ◽  
Toshihiro Hasegawa ◽  
Liang Tang ◽  
Wei Wang ◽  
Junjie Zhou ◽  
...  

2020 ◽  
Vol 21 (13) ◽  
pp. 4775
Author(s):  
Hari B. Krishnan ◽  
Won-Seok Kim ◽  
Nathan W. Oehrle ◽  
James R. Smith ◽  
Jason D. Gillman

High growth temperatures negatively affect soybean (Glycine max (L.) Merr) yields and seed quality. Soybean plants, heat stressed during seed development, produce seed that exhibit wrinkling, discoloration, poor seed germination, and have an increased potential for incidence of pathogen infection and an overall decrease in economic value. Soybean breeders have identified a heat stress tolerant exotic landrace genotype, which has been used in traditional hybridization to generate experimental genotypes, with improved seed yield and heat tolerance. Here, we have investigated the seed protein composition and ultrastructure of cotyledonary parenchyma cells of soybean genotypes that are either susceptible or tolerant to high growth temperatures. Biochemical analyses of seed proteins isolated from heat-tolerant and heat-sensitive genotypes produced under 28/22 °C (control), 36/24 °C (moderate), and 42/26 °C (extreme) day/night temperatures revealed that the accumulation in soybean seeds of lipoxygenase, the β-subunit of β-conglycinin, sucrose binding protein and Bowman-Birk protease inhibitor were negatively impacted by extreme heat stress in both genotypes, but these effects were less pronounced in the heat-tolerant genotype. Western blot analysis showed elevated accumulation of heat shock proteins (HSP70 and HSP17.6) in both lines in response to elevated temperatures during seed fill. Transmission electron microscopy showed that heat stress caused dramatic structural changes in the storage parenchyma cells. Extreme heat stress disrupted the structure and the membrane integrity of protein storage vacuoles, organelles that accumulate seed storage proteins. The detachment of the plasma membrane from the cell wall (plasmolysis) was commonly observed in the cells of the sensitive line. In contrast, these structural changes were less pronounced in the tolerant genotype, even under extreme heat stress, cells, for the most part, retained their structural integrity. The results of our study demonstrate the contrasting effects of heat stress on the seed protein composition and ultrastructural alterations that contribute to the tolerant genotype’s ability to tolerate high temperatures during seed development.


2014 ◽  
Vol 9 (3) ◽  
pp. 034011 ◽  
Author(s):  
Delphine Deryng ◽  
Declan Conway ◽  
Navin Ramankutty ◽  
Jeff Price ◽  
Rachel Warren

2017 ◽  
Vol 133 (3-4) ◽  
pp. 1107-1118 ◽  
Author(s):  
Liang He ◽  
James Cleverly ◽  
Bin Wang ◽  
Ning Jin ◽  
Chunrong Mi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document