Particle Size Distribution and Shape Characterization of the Chips Produced During Granite Machining in Relation to Process Forces and Specific Energy

2013 ◽  
Vol 31 (3) ◽  
pp. 277-286 ◽  
Author(s):  
Nurdan GüneŞ Yilmaz ◽  
R. Mete Göktan ◽  
Hakan Gaşan ◽  
O. Nuri Çelik
MRS Advances ◽  
2016 ◽  
Vol 1 (32) ◽  
pp. 2303-2308 ◽  
Author(s):  
Alberto Delgado ◽  
Jorge A. Catalan ◽  
Hisato Yamaguchi ◽  
Claudia Narvaez Villarrubia ◽  
Aditya D. Mohite ◽  
...  

ABSTRACTIn this work, we have explored the prospects of MoS2 and WS2, both of which are semiconducting 2D materials, for potential composite applications. In order to form 2D materials composites we have to first disperse them chemically in solution. MoS2 and WS2 powders were oversaturated in N-Methyl-2-pyrrolidone (NMP) solution at 37.5 mg/mL and sonicated at room temperature (RT) for sonication times ranging from 30 minutes to close to 24 hours. After solution processing, the samples with the 2D flakes were transferred to an Isopropyl Alcohol (IPA) bath for particle size distribution analysis. We have observed significant changes in particle size distribution spanning two orders of magnitude as a function of the sonication conditions. Specifically, the observed changes in particle size distribution for MoS2 and WS2 powders ranged from 44 microns down to 0.409 microns, and 148 microns down to 0.409, respectively, as compared to the untreated materials. Structural analysis was conducted using the SEM and X-Ray diffraction. The structural analysis using the SEM revealed morphological signatures between the two materials, where the MoS2 flakes had a randomly oriented distribution with occasional triangular flakes. In the case of the WS2, regardless of the sonication conditions, the WS2 flakes seemed to have a characteristic 120° angular distribution at the vertices, representing a rhombus with concave edges. The XRD analysis showed a minute shift in the characteristic peaks that maybe due to strain-induced effects as a result of the solution processing. Optical characterization of the materials was also conducted using Raman Spectroscopy to validate the average layer number resulting from the solution dispersions and the spatial and compositional uniformity of the two material samples.


2016 ◽  
Vol 70 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Djuro Vukmirovic ◽  
Jovanka Levic ◽  
Aleksandar Fistes ◽  
Radmilo Colovic ◽  
Tea Brlek ◽  
...  

In recent years there is an emerging trend of coarse grinding of cereals in production of poultry feed due to positive influence of coarse particles on poultry digestive system. Influence of grinding method (hammer mill vs. roller mill) and grinding intensity of corn (coarseness of grinding) on mill specific energy consumption and pellet quality was investigated. By decreasing grinding intensity of corn (coarser grinding), specific energy consumption of both hammer mill and roller mill was significantly decreased (p < 0.05). When comparing similar grinding intensities on hammer mill and roller mill (similar geometric mean diameter or similar particle size distribution), specific energy consumption was higher for the hammer mill. Pellet quality decreased with coarser grinding on hammer mill but, however, this effect was not observed for the roller mill. Generally, pellet quality was better when roller mill was used. It can be concluded that significant energy savings could be achieved by coarser grinding of corn before pelleting and by using roller mill instead of hammer mill. From the aspect of pellet quality, if coarser grinding is applied it is better to use roller mill, concerning that more uniform particle size distribution of corn ground on roller mill probably results in more uniform particle size distribution in pellets and this provides better pellet quality.


2020 ◽  
Vol 328 ◽  
pp. 01006
Author(s):  
Ondrej Misik ◽  
Milan Maly ◽  
Ondrej Cejpek ◽  
Frantisek Lizal

Nebulizers are commonly used devices for inhalation treatment of various disorders. There are three main categories of medical nebulization technology: jet nebulizers, ultrasound nebulizer, and mesh nebulizer. The mesh nebulizers seem to be very promising since this technology should be able to produce aerosol with precisely determined particle size and is easy to use as well [1]. Aerosol generated from the mesh nebulizer Aerogen Solo was measured in this work. Particle size distribution with a mass median of aerodynamic diameter (MMAD) was determined by two different methods.


Sign in / Sign up

Export Citation Format

Share Document