Effect of cooling rate on the transformation characteristics and precipitation behaviour of carbides in AISI M42 high-speed steel

2018 ◽  
Vol 46 (7) ◽  
pp. 698-704 ◽  
Author(s):  
Yiwa Luo ◽  
Hanjie Guo ◽  
Jing Guo
2022 ◽  
Vol 327 ◽  
pp. 105-110
Author(s):  
Ting Sun ◽  
Yong Jin Wang ◽  
Ren Bo Song ◽  
Ya Zheng Liu ◽  
Jun Yanagimoto ◽  
...  

In this paper, the fundamental microstructure evolution of M2 high speed steel was investigated during semi-solid controlled cooling and conventional cooling, respectively. Semi-solid controlled cooling was conducted at 1260 °C with cooling rates from 0.1 to 10 °C/s, while conventional cooling was conducted at 1200 °C and 890 °C with different cooling rates. The continuous cooling transformation curves were plot according to the microstructure evolution. The results showed that microstructure transformation behavior of cooling structure in semi-solid temperature range was different from that of conventional process. For semi-solid specimen, the solid austenite dissolved more alloy elements, and the austenite stability was increased. The solid matrix was pearlite structure in the samples with cooling rate of 0.1 °C /s. When the cooling rate reached 1 °C/s, the granular pearlite disappeared and martensite lath was formed. The structure was relatively uniform, on which there were large carbide with regular shape. The solidified liquid phase showed a network shape surrounding the solid particles. The size of solid particles showed a decreasing trend with the increase of cooling rates. For conventional cooling process, the large eutectic M6C carbide and the small precipitated MC carbide could not be dissolved by austenitized at 890 °C. Increasing the austenitization temperature helped dissolving part of the carbides. The hardenability of M2 steel was high. The hardness has increased to a high level for both semi-solid and conventional specimens when cooling rate reached 1 °C/s. No obvious increase happened when cooling rate continued increasing.


1987 ◽  
Vol 26 (4) ◽  
pp. 277-281
Author(s):  
L. D. Kulak ◽  
A. P. Pikozh ◽  
A. A. Dorogoi

2011 ◽  
Vol 418-420 ◽  
pp. 3-7
Author(s):  
Yi Peng Yu ◽  
Jin Feng Huang ◽  
Hua Cui ◽  
Yuan Hua Cai ◽  
Ji Shan Zhang

The M3 type high speed steel billets with / without Nb addition were prepared via spray forming. The effects of cooling rate and Nb on the microstructures and property of the M3 type high speed steel were investigated. The results show that the as-cast steels contain coarse primary dendrites and M2C eutectic carbide, but the equiaxed grains and fine carbides are formed in the spray-formed steels. It can be seen that carbide precipitation and grain growth were suppressed by high cooling rate. The Nb additions can change the types of primary carbides. The solidified carbide microstructure was effectively changed from M2C to M6C type during the cooling of hot spray-formed billet. Niobium improves the microstructural thermostability of the M3 type high speed steel during heat treatments.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1226-1235
Author(s):  
Safa R. Fadhil ◽  
Shukry. H. Aghdeab

Electrical Discharge Machining (EDM) is extensively used to manufacture different conductive materials, including difficult to machine materials with intricate profiles. Powder Mixed Electro-Discharge Machining (PMEDM) is a modern innovation in promoting the capabilities of conventional EDM. In this process, suitable materials in fine powder form are mixed in the dielectric fluid. An equal percentage of graphite and silicon carbide powders have been mixed together with the transformer oil and used as the dielectric media in this work. The aim of this study is to investigate the effect of some process parameters such as peak current, pulse-on time, and powder concentration of machining High-speed steel (HSS)/(M2) on the material removal rate (MRR), tool wear rate (TWR) and the surface roughness (Ra). Experiments have been designed and analyzed using Response Surface Methodology (RSM) approach by adopting a face-centered central composite design (FCCD). It is found that added graphite-silicon carbide mixing powder to the dielectric fluid enhanced the MRR and Ra as well as reduced the TWR at various conditions. Maximum MRR was (0.492 g/min) obtained at a peak current of (24 A), pulse on (100 µs), and powder concentration (10 g/l), minimum TWR was (0.00126 g/min) at (10 A, 100 µs, and 10 g/l), and better Ra was (3.51 µm) at (10 A, 50 µs, and 10 g/l).


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


Alloy Digest ◽  
1967 ◽  
Vol 16 (4) ◽  

Abstract Mustang-LC is a tungsten-molybdenum high-speed steel specially developed for hot work applications requiring long die life. It is recommended for hot forming and swaging dies, hot extrusion dies, hot punches, etc. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-192. Producer or source: Jessop Steel Company.


Sign in / Sign up

Export Citation Format

Share Document