Dynamic reliability-based robust design optimization with time-variant probabilistic constraints

2013 ◽  
Vol 46 (6) ◽  
pp. 784-809 ◽  
Author(s):  
Pingfeng Wang ◽  
Zequn Wang ◽  
Abdulaziz T. Almaktoom
Author(s):  
Shui Yu ◽  
Zhonglai Wang

During the product design and development stage, design engineers often encounter reliability and robustness of dynamic uncertain structures. Meanwhile, time-varying and high nonlinear performance are the basic characteristics of reliability analysis and design. Hence, the time-dependent reliability analysis and integrating reliability-based design with robust design become a primary challenge in reliability-based robust design optimization. This paper proposes a multi-objective integrated framework for time-dependent reliability-based robust design optimization and the corresponding algorithms. The multi-objective integrated framework, which minimizes the mean value and coefficient of variation for the objective function at the same time subject to time-dependent probabilistic constraints, is first established. The time-dependent probabilistic constraints are then converted into deterministic constraints using a combination of moment method and the sparse grid based stochastic collocation method. The evolutionary multi-objective optimization algorithm is finally employed for the deterministic multi-objective optimization problem. Several examples are investigated to demonstrate the effectiveness of the proposed method.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
Yuanfu Tang ◽  
Jianqiao Chen ◽  
Junhong Wei

In practical applications, there may exist a disparity between real values and optimal results due to uncertainties. This kind of disparity may cause violations of some probabilistic constraints in a reliability based design optimization (RBDO) problem. It is important to ensure that the probabilistic constraints at the optimum in a RBDO problem are insensitive to the variations of design variables. In this paper, we propose a novel concept and procedure for reliability based robust design in the context of random uncertainty and epistemic uncertainty. The epistemic uncertainty of design variables is first described by an info gap model, and then the reliability-based robust design optimization (RBRDO) is formulated. To reduce the computational burden in solving RBRDO problems, a sequential algorithm using shifting factors is developed. The algorithm consists of a sequence of cycles and each cycle contains a deterministic optimization followed by an inverse robustness and reliability evaluation. The optimal result based on the proposed model satisfies certain reliability requirement and has the feasible robustness to the epistemic uncertainty of design variables. Two examples are presented to demonstrate the feasibility and efficiency of the proposed method.


2021 ◽  
Author(s):  
xiongming lai ◽  
Ju Huang ◽  
Cheng Wang ◽  
Yong Zhang

Abstract When carrying out robust design optimization for complex engineering structures, they are computed by finite element software and are always computation-intensive. Aim at this problem, the paper proposes an efficient integrated framework of Reliability-based Robust Design Optimization (RBRDO). Firstly, the conventional RBRDO problem is changed as percentile form, that is, the improved percentile formulation of computing the objective robustness and probabilistic constraints is presented by resorting to the employment of Performance Measure Approach (PMA). Secondly, the above improved RBRDO problem is simplified by a series of new approximation methods due to the need of reducing computation. An efficient approximation method is proposed to estimate PMA functions of the RBRDO formulation. Based on it, the above improved RBRDO problem can be transformed into a sequence of approximate deterministic sub-optimization problems, whose objective function and constraints are expressed as the approximate explicit form only in relation to the design variables. Furthermore, use the trust region method to solve the above sequence of sub-optimization. Lastly, several examples are used to demonstrate the effectiveness and efficiency of the proposed method.


Author(s):  
Shui Yu ◽  
Zhonglai Wang ◽  
Zhihua Wang

Due to the uncertain and dynamic parameters from design, manufacturing, and working conditions, many engineering structures usually show uncertain and dynamic properties. During the product design and development stages, designers often encounter reliability and robustness measures of dynamic uncertain structures. Time-varying and high nonlinear performance brings a new challenge for the reliability-based robust design optimization. This paper proposes a multi-objective integrated framework for time-dependent reliability-based robust design optimization and the corresponding algorithms. The integrated framework is first established by minimizing the mean value and coefficient of variation of the objective performance at the same time subject to time-dependent probabilistic constraints. The time-dependent probabilistic constraints are then converted into deterministic constraints using the dimension reduction method. The evolutionary multi-objective optimization algorithm is finally employed for the deterministic multi-objective optimization problem. Several examples are investigated to demonstrate the effectiveness of the proposed method.


Author(s):  
Souvik Chakraborty ◽  
Tanmoy Chatterjee ◽  
Rajib Chowdhury ◽  
Sondipon Adhikari

Optimization for crashworthiness is of vast importance in automobile industry. Recent advancement in computational prowess has enabled researchers and design engineers to address vehicle crashworthiness, resulting in reduction of cost and time for new product development. However, a deterministic optimum design often resides at the boundary of failure domain, leaving little or no room for modeling imperfections, parameter uncertainties, and/or human error. In this study, an operational model-based robust design optimization (RDO) scheme has been developed for designing crashworthiness of vehicle against side impact. Within this framework, differential evolution algorithm (DEA) has been coupled with polynomial correlated function expansion (PCFE). An adaptive framework for determining the optimum basis order in PCFE has also been presented. It is argued that the coupled DEA–PCFE is more efficient and accurate, as compared to conventional techniques. For RDO of vehicle against side impact, minimization of the weight and lower rib deflection of the vehicle are considered to be the primary design objectives. Case studies by providing various emphases on the two objectives have also been performed. For all the cases, DEA–PCFE is found to yield highly accurate results.


Sign in / Sign up

Export Citation Format

Share Document