Effect of certain cultural practices on susceptibility of potato tubers to soft rot disease caused byErwinia carotovorapv.carotovora

2010 ◽  
Vol 43 (16) ◽  
pp. 1625-1635 ◽  
Author(s):  
Kamal A.M. Abo-Elyousr ◽  
M. A. Sallam ◽  
M. H. Hassan ◽  
A.D. Allam
2017 ◽  
Vol 52 (2) ◽  
pp. 135-140 ◽  
Author(s):  
MM Rahman ◽  
AA Khan ◽  
IH Mian ◽  
AM Akanda ◽  
MZ Alam

Bactericidal effect was investigated by chemicals against potato soft rot bacteria in vitro and in storage. The chemicals were acetic acid, boric acid, bleaching powder, lactic acid, calcium hydroxide, calcium chloride, potassium chloride and sodium hypo-chloride. Among eight  chemicals only three chemicals viz. acetic acid, boric acid and bleaching powder showed bactericidal activity against potato soft rot bacteria  Pectobacterium carotovorum subsp. carotovorum (E. carotovora subsp. carotovora) P-138 in vitro. Based on the results of in vitro experiment three chemicals, acetic acid, boric acid and bleaching powder were used to control soft rot disease of potato in storage. Fresh potato tubers were dipped in 0.2% solution/suspensions of acetic acid, boric acid and bleaching powder for 30 min. Then soft rot bacteria Pectobacterium carotovorum subsp. carotovorum P-138 was inoculated on potato. Finally potatoes were stored for 22 weeks in net bags in sterilized condition. All the three chemicals significantly decreased the infection rate, loss in weight and increased percentage of disease reduction (PDR) of potato. Boric acid was the most effective in controlling the soft rot disease of potato in storage followed by acetic acid and bleaching powder. So these chemicals may be used for seed purpose storage of potato tubers for year round storage at farmer’s level.Bangladesh J. Sci. Ind. Res. 52(2), 135-140, 2017


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Hassan Abd-El-Khair ◽  
Tarek G. Abdel-Gaied ◽  
Maurice S. Mikhail ◽  
Ahmed I. Abdel-Alim ◽  
Hamdy I. Seif El-Nasr

Abstract Background Several chemical bactericides were applied for controlling soft rot bacteria, Pectobacterium carotovorum subsp. carotovorum, which causes the destructive soft rot disease to many economically important vegetables, but because of their toxic hazards on human and environment became limit. The biocontrol was applied to control many plant pathogens. Therefore, this work is aimed to study the antagonistic activity of bacterial agents, i.e. Bacillus subtilis, Bacillus pumilus, Bacillus megaterium and Pseudomonas fluorescens, and fugal agents, i.e. Trichoderma harzianum, Trichoderma viride and Trichoderma virens, to control bacterial soft rot disease under in vitro and in vivo tests. Results The tested treatments could protect the potato tubers against the development of soft rot. T. viride and T. virens were highly effective in reducing soft rot symptoms on inoculated potato tuber slices, when applied at the same time or 2 h before pathogen inoculation, while B. megaterium and T. harzianum were highly effective when applied at the same time or 2 h after pathogen inoculation. In whole potato tubers technique, B.pumilus highly protected the stored potato tuber under artificially infection conditions, than P. fluorescens, T. harzianum, B. subtilis, T. viride, T. virens and B. megaterium, respectively. Conclusion Application of fungal agents or specify the bacterial species can play an important role in controlling bacterial soft rot disease in vegetables and increase the stored periods of potato tubers under storage conditions without any toxic effects.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 685-685 ◽  
Author(s):  
E. Golkhandan ◽  
S. Kamaruzaman ◽  
M. Sariah ◽  
M. A. Zainal Abidin ◽  
E. Nazerian ◽  
...  

In August 2011, sweet potato (Ipomoea batatas), tomato (Solanum lycopersicum), and eggplant (S. melongena) crops from major growing areas of the Cameron highlands and Johor state in Malaysia were affected by a soft rot disease. Disease incidence exceeded 80, 75, and 65% in severely infected fields and greenhouses of sweet potato, tomato, and eggplant, respectively. The disease was characterized by dark and small water-soaked lesions or soft rot symptoms on sweet potato tubers, tomato stems, and eggplant fruits. In addition, extensive discoloration of vascular tissues, stem hollowness, and water-soaked, soft, dark green lesions that turned brown with age were observed on the stem of tomato and eggplant. A survey was performed in these growing areas and 22 isolates of the pathogen were obtained from sweet potato (12 isolates), tomato (6 isolates), and eggplant (4 isolates) on nutrient agar (NA) and eosin methylene blue (EMB) (4). The cultures were incubated at 27°C for 2 days and colonies that were emerald green on EMB or white to gray on NA were selected for further studies. All bacterial cultures isolated from the survey exhibited pectolytic ability on potato slices. These bacterial isolates were gram negative; rod shaped; N-acetylglucosaminyl transferase, gelatin liquefaction, and OPNG positive; and were also positive for acid production from D-galactose, lactosemelibiose, raffinose, citrate, and trehalose. They were negative for indol production, phosphatase activity, reducing substances from sucrose, and negative for acid production from maltose, sorbitol, inositol, inolin, melezitose, α-mathyl-D-glocoside, and D-arabitol. The bacteria did not grow on NA at 37°C. Based on these biochemical and morphological assays, the pathogen was identified as Pectobacterium wasabiae (2). In addition, DNA was extracted and PCR assay with two primers (16SF1 and 16SR1) was performed (4). Partial sequences of 16S rRNA (GenBank Accession Nos. JQ665714, JX494234, and JX513960) of sweet potato, tomato, and eggplant, respectively, exhibited a 99% identity with P. wasabiae strain SR91 (NR_026047 and NR_026047.1). A pathogenicity assay was carried out on sweet potato tubers (cv. Oren), tomato stems (cv. 152177-A), and eggplant fruits (cv. 125066x) with 4 randomly representative isolates obtained from each crop. Sweet potato tubers, tomato stems, and eggplant fruits (4 replications) were sanitized in 70% ethyl alcohol for 30 s, washed and rinsed in sterile distilled water, and needle punctured with a bacterial suspension at a concentration of 108 CFU/ml. Inoculated tubers, stems, and fruits were incubated in a moist chamber at 90 to 100% RH for 72 h at 25°C when lesions were measured. All inoculated tubers, stems, and fruits exhibited soft rot symptoms after 72 h similar to those observed in the fields and greenhouses and the same bacteria were consistently reisolated. Symptoms were not observed on controls. The pathogenicty test was repeated with similar results. P. wasabiae have been previously reported to cause soft rot on Japanese horseradish (3), and aerial stem rot on potato in New Zealand (4), the U.S. (2), and Iran (1). To our knowledge, this is the first report of sweet potato, tomato, and eggplant soft rot caused by P. wasabiae in Malaysia. References: (1) S. Baghaee-Ravari et al. Eur. J. Plant Pathol. 129:413, 2011. (2) S. De Boer and A. Kelman. Page 56 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. N. Schaad et al., eds. APS Press, St. Paul, 2001. (3) M. Goto et al. Int. J. Syst. Bacteriol. 37:130, 1987. (4) A. R. Pitman et al. Eur. J. Plant Pathol. 126:423, 2010.


Agrikultura ◽  
2016 ◽  
Vol 27 (3) ◽  
Author(s):  
Noor Istifadah ◽  
Muhamad Salman Umar ◽  
Sudarjat Sudarjat ◽  
Luciana Djaya

ABSTRACTThe abilities of endophytic bacteria from potato roots and tubers to suppress soft rot disease (Erwinia carotovora pv. carotovora) in potato tuberSoft rot disease caused by Erwinia carotovora pv. carotovora is one of limiting factors in cultivation and post harvest of potato. The eco-friendly control measure that can be developed for controlling the diseases is biological control. Microbes that are potential as biological control agents include endophytic bacteria. This paper discussed the results of study examining the potential of endophytic bacteria isolated from roots and tubers of potato to inhibit the growth of E. carotovora pv. carotovora in vitro and suppress soft rot disease in potato tuber. The results showed that among 24 isolates examined, four isolates of endophytic bacteria (one isolate from potato tuber and three isolates from potato roots) inhibited the growth of E. carotovora pv. carotovora in vitro with inhibition zone 3.5-6.8 mm. In the in vivo test, the isolates inhibited the soft rot disease in potato tuber by 71.5-86.4%. The isolate that tended to show relatively better inhibition in vitro and in vivo was isolate from potato tuber which is CK U3 (Lysinibacillus sp.)Keywords: Biological control, Endophytic bacteria, Post-harvest, Potato, Soft rot diseaseABSTRAKPenyakit busuk lunak yang disebabkan bakteri Erwinia carotovora pv. carotovora, merupakan salah satu kendala dalam budidaya dan pascapanen kentang. Cara pengendalian ramah lingkungan yang dapat dikembangkan untuk menekan penyakit tersebut adalah pengendalian biologi. Kelompok mikroba yang berpotensi sebagi agens pengendali biologi adalah bakteri endofit. Artikel ini mendiskusikan potensi isolat bakteri endofit yang berasal dari ubi dan akar kentang untuk menghambat pertumbuhan bakteri E. carotovora pv. carotovora secara in vitro dan menekan perkembangan penyakit busuk lunak pada ubi kentang. Hasil percobaan menunjukkan bahwa diantara 24 isolat bakteri yang diuji, terdapat empat isolat bakteri endofit (satu isolat dari ubi kentang dan tiga isolat dari akar kentang) yang dapat menghambat pertumbuhan bakteri E. carotovora pv. carotovora secara in vitro dengan zona penghambatan sebesar 3,5-6,8 mm. Pada pengujian secara in vivo, isolat-isolat tersebut dapat menekan perkembangan penyakit busuk lunak pada ubi kentang sebesar 71,5-86,4%. Isolat yang cenderung menunjukkan penghambatan relatif lebih baik secara in vitro dan in vivo adalah isolat bakteri endofit asal ubi kentang yaitu isolat CK U3 (Lysinibacillus sp.).Kata Kunci: Pengendalian biologi, Bakteri endofit, Pascapanen, Kentang, Penyakit busuk basah


2021 ◽  
Vol 4 (2) ◽  
pp. 1077-1086
Author(s):  
Nguyen Thanh Trung ◽  
Nguyen Thi Van Anh ◽  
Tran Thi Dao ◽  
Nguyen Thanh Huyen ◽  
Pham Le Anh Minh ◽  
...  

Erwinia is a genus of Enterobacteriacea containing mostly pathogens, which cause soft rot disease in many ornamental plants and crops, including Asparagus officinalis. Chemical treatments to control Erwinia have lost their attractiveness because of the development of resistant strains and the negative impacts on the environment and human health. Therefore, the study of biological controls of soft rot disease has gained great importance. There are several types of microorganisms that show activity against Erwinia spp. such as Pseudomonas fluorescence, Bacillus subtilis, and Streptomyces spp. Among them, Streptomyces spp. are found to be the most effective control agents. In this study, 64 isolates of Streptomyces were screened for their antibacterial activity against Erwinia spp. The results indicated that 18 isolates showed an antagonistic reaction against Erwinia spp. Among them, isolate D5.1 showed the highest inhibition activity. In addition, the morphological and antibacterial activities of isolate D5.1 grown in different conditions were also characterized. 


2022 ◽  
Author(s):  
Yunpeng Wang ◽  
Xiaoli Wang ◽  
Jingfeng Zhu ◽  
Huan Wei ◽  
Zhipeng Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document