scholarly journals Effects of Culture Conditions on the Antibacterial Activity of Streptomyces Spp. against Erwinia Spp. Causing Soft Rot Disease on Asparagus Officinalis

2021 ◽  
Vol 4 (2) ◽  
pp. 1077-1086
Author(s):  
Nguyen Thanh Trung ◽  
Nguyen Thi Van Anh ◽  
Tran Thi Dao ◽  
Nguyen Thanh Huyen ◽  
Pham Le Anh Minh ◽  
...  

Erwinia is a genus of Enterobacteriacea containing mostly pathogens, which cause soft rot disease in many ornamental plants and crops, including Asparagus officinalis. Chemical treatments to control Erwinia have lost their attractiveness because of the development of resistant strains and the negative impacts on the environment and human health. Therefore, the study of biological controls of soft rot disease has gained great importance. There are several types of microorganisms that show activity against Erwinia spp. such as Pseudomonas fluorescence, Bacillus subtilis, and Streptomyces spp. Among them, Streptomyces spp. are found to be the most effective control agents. In this study, 64 isolates of Streptomyces were screened for their antibacterial activity against Erwinia spp. The results indicated that 18 isolates showed an antagonistic reaction against Erwinia spp. Among them, isolate D5.1 showed the highest inhibition activity. In addition, the morphological and antibacterial activities of isolate D5.1 grown in different conditions were also characterized. 

2016 ◽  
Vol 4 (3) ◽  
pp. 105-119
Author(s):  
Abdelradi T. Bakeer ◽  
Khaled Elbanna ◽  
Sameh A. Elnaggar

Three natural antibacterial compounds including bacteriocin like substance (BLS) produced from lactic acid bacteria (LAB), ethanolic extract of propolis (EEP), and nine plant extracts were evaluated against soft rot Bacillus strains. Testing in vivo these compounds were evaluated to control pear and apple soft rot disease. Among eight BLS tested, BLS of LAB2, LAB105 and LAB 107 exhibited the highest antibacterial activity as indicated by the formation of clear inhibition zone. Propolis extracts exhibited significant antibacterial activity against all tested soft rot Bacillus strains and it was noticed that the antibacterial activity was concentration dependent. Among nine plant extracts tested, extracts of Eucalyptus globulus and Psidium guajava exhibited the highest antibacterial activity. All tested antibacterial products significantly decreased apple and pear soft rot severity caused by Bacillus altitudinis compared to untreated control. The highest reduction percentage of soft rot severity was recorded for EEP followed by BLS from LAB and plant extracts tested, respectively. Combined pre-and post-harvest treatments of apple and pear with antimicrobial compounds proved to be more effective in reducing the soft rot severity and improved the physical and chemical properties of fruits during storage in both years of the study. The natural antimicrobial agents used in this study were promising compounds, since it seems to be more safe, economical and great potential for extending the shelf life and improve the quality of fruits. Therefore, the application of these compounds in the control of apple and pear soft rot could be advantageous for consumers, producers, and the environment.


2021 ◽  
Author(s):  
Aeron Jade Salinas Parena ◽  
Benji Brayan Ilagan Silva ◽  
Rae Mark L Mercado ◽  
Adelbert Adrian A Sendon ◽  
Freddiewebb B Signabon ◽  
...  

Soft rot caused by Pectobacterium spp. is responsible for significant losses in vegetable production worldwide. Methods for the effective control of this disease are limited and are primarily based on good agricultural practices. The use of phages as biocontrol agents appears to be a promising alternative to combat phytopathogens. In this study, we investigated the efficacy of lytic phages against soft rot caused by Pectobacterium carotovorum subsp. carotovorum. Designated as PPc_A3, PPc_D1, and PPc_J3, three bacteriophage isolates, which were recovered from symptomatic tissues and environmental samples, were observed to effectively lyse P. carotovorum subsp. carotovorum. PPc_A3 belongs to the Podoviridae family, while phages PPc_D1 and PPc_J3 belong to the Myoviridae family based on the morphological features of the virions as observed using transmission electron microscopy. The optimal multiplicity of infection (MOI) differed greatly among the three phages. All survived incubations at 30°C, 40°C and 50°C and at pH ranging from 3.0 to 9.0, but were all inactivated at 60°C and at pH 12. Both monophage and cocktail preparations were effective in inhibiting the growth of P. carotovorum subsp. carotovorum in in vitro challenge tests. In the semi-in planta assays, monophage treatments resulted in significant reduction of tissue maceration in potato slices, while treatment with cocktail preparations completely inhibited the development of soft rot disease. Overall, these results demonstrate the efficacy of cocktail formulations of phages PPc_A3, PPc_D1, and PPc_J3 for the biocontrol of soft rot disease caused by P. carotovorum subsp. carotovorum.


2016 ◽  
Vol 5 (3) ◽  
pp. 27-32 ◽  
Author(s):  
Ahmed I. Khattab ◽  
Eltahir H. Babiker ◽  
Humodi A. Saeed

The objectives of this study were to isolate and identify Streptomyces from soil sediments as well as to optimize cultural growth conditions for maximum antibacterial productivity. A total of fifty soil sediments were collected from Red Sea, Sudan. The soil sediments were pretreated and cultivated on agar medium. Promising Streptomyces spp. were isolated by agar overlay method using indicator organisms. Optimization of chemical and physical culture conditions was carried out. The later was judged by assessment of antibacterial activity. Ethyl acetate was used to extract the secondary metabolite compounds. The separation of the active ingredients was performed using both thin layer chromatography (TLC) and gas chromatography-mass spectrometer (GC-MS). The results revealed nine strains of Streptomyces. Of them two (PS1 and PS28) isolates exhibited high activity against pathogenic bacteria. The optimum growth conditions were pH 7.5, temperature at 30°C, soyabean concentration 2.5 g/l, incubation period in 7 days, MgSO4.7H2O conc. 1g/l and K2HPO4 conc. 2.5g/l. TLC test showed three and two fragments from metabolites of PS1 and PS28 respectively, while the GC-MS analysis revealed eight and eleven compounds with antibacterial activity of PS1 and PS28 respectively. It is concluded that marine is promising source of secondary metabolites.Khattab et al., International Current Pharmaceutical Journal, February 2016, 5(3): 27-32


Agrikultura ◽  
2016 ◽  
Vol 27 (3) ◽  
Author(s):  
Noor Istifadah ◽  
Muhamad Salman Umar ◽  
Sudarjat Sudarjat ◽  
Luciana Djaya

ABSTRACTThe abilities of endophytic bacteria from potato roots and tubers to suppress soft rot disease (Erwinia carotovora pv. carotovora) in potato tuberSoft rot disease caused by Erwinia carotovora pv. carotovora is one of limiting factors in cultivation and post harvest of potato. The eco-friendly control measure that can be developed for controlling the diseases is biological control. Microbes that are potential as biological control agents include endophytic bacteria. This paper discussed the results of study examining the potential of endophytic bacteria isolated from roots and tubers of potato to inhibit the growth of E. carotovora pv. carotovora in vitro and suppress soft rot disease in potato tuber. The results showed that among 24 isolates examined, four isolates of endophytic bacteria (one isolate from potato tuber and three isolates from potato roots) inhibited the growth of E. carotovora pv. carotovora in vitro with inhibition zone 3.5-6.8 mm. In the in vivo test, the isolates inhibited the soft rot disease in potato tuber by 71.5-86.4%. The isolate that tended to show relatively better inhibition in vitro and in vivo was isolate from potato tuber which is CK U3 (Lysinibacillus sp.)Keywords: Biological control, Endophytic bacteria, Post-harvest, Potato, Soft rot diseaseABSTRAKPenyakit busuk lunak yang disebabkan bakteri Erwinia carotovora pv. carotovora, merupakan salah satu kendala dalam budidaya dan pascapanen kentang. Cara pengendalian ramah lingkungan yang dapat dikembangkan untuk menekan penyakit tersebut adalah pengendalian biologi. Kelompok mikroba yang berpotensi sebagi agens pengendali biologi adalah bakteri endofit. Artikel ini mendiskusikan potensi isolat bakteri endofit yang berasal dari ubi dan akar kentang untuk menghambat pertumbuhan bakteri E. carotovora pv. carotovora secara in vitro dan menekan perkembangan penyakit busuk lunak pada ubi kentang. Hasil percobaan menunjukkan bahwa diantara 24 isolat bakteri yang diuji, terdapat empat isolat bakteri endofit (satu isolat dari ubi kentang dan tiga isolat dari akar kentang) yang dapat menghambat pertumbuhan bakteri E. carotovora pv. carotovora secara in vitro dengan zona penghambatan sebesar 3,5-6,8 mm. Pada pengujian secara in vivo, isolat-isolat tersebut dapat menekan perkembangan penyakit busuk lunak pada ubi kentang sebesar 71,5-86,4%. Isolat yang cenderung menunjukkan penghambatan relatif lebih baik secara in vitro dan in vivo adalah isolat bakteri endofit asal ubi kentang yaitu isolat CK U3 (Lysinibacillus sp.).Kata Kunci: Pengendalian biologi, Bakteri endofit, Pascapanen, Kentang, Penyakit busuk basah


2022 ◽  
Author(s):  
Yunpeng Wang ◽  
Xiaoli Wang ◽  
Jingfeng Zhu ◽  
Huan Wei ◽  
Zhipeng Ding ◽  
...  

2019 ◽  
Vol 8 (7) ◽  
Author(s):  
Xing Ma ◽  
Nicole T. Perna ◽  
Jeremy D. Glasner ◽  
Jianjun Hao ◽  
Steven Johnson ◽  
...  

In 2014, an outbreak of potato blackleg and soft rot disease emerged in North America and continues to impact potato production. Here, we report the annotated genome sequence of Dickeya dianthicola ME23, a strain hypothesized to be representative of the bacterial population responsible for this disease outbreak.


2020 ◽  
Vol 8 (5) ◽  
pp. 697 ◽  
Author(s):  
Jieling Li ◽  
Ming Hu ◽  
Yang Xue ◽  
Xia Chen ◽  
Guangtao Lu ◽  
...  

Dickeya zeae is the causal agent of bacterial soft rot disease, with a wide range of hosts all over the world. At present, chemical agents, especially agricultural antibiotics, are commonly used in the prevention and control of bacterial soft rot, causing the emergence of resistant pathogens and therefore increasing the difficulty of disease prevention and control. This study aims to provide a safer and more effective biocontrol method for soft rot disease caused by D. zeae. The spot-on-lawn assay was used to screen antagonistic bacteria, and three strains including SC3, SC11 and 3-10 revealed strong antagonistic effects and were identified as Pseudomonas fluorescens, P. parafulva and Bacillus velezensis, respectively, using multi-locus sequence analysis (MLSA) based on the sequences of 16S rRNA and other housekeeping genes. In vitro antimicrobial activity showed that two Pseudomonas strains SC3 and SC11 were only antagonistic to some pathogenic bacteria, while strain 3-10 had broad-spectrum antimicrobial activity on both pathogenic bacteria and fungi. Evaluation of control efficacy in greenhouse trials showed that they all restrained the occurrence and development of soft rot disease caused by D. zeae MS2 or EC1. Among them, strain SC3 had the most impressive biocontrol efficacy on alleviating the soft rot symptoms on both monocotyledonous and dicotyledonous hosts, and strain 3-10 additionally reduced the occurrence of banana wilt disease caused by Fusarium oxysporum f. sp. cubensis. This is the first report of P. fluorescens, P. parafulva and B. velezensis as potential bio-reagents on controlling soft rot disease caused by D. zeae.


2017 ◽  
Vol 52 (2) ◽  
pp. 135-140 ◽  
Author(s):  
MM Rahman ◽  
AA Khan ◽  
IH Mian ◽  
AM Akanda ◽  
MZ Alam

Bactericidal effect was investigated by chemicals against potato soft rot bacteria in vitro and in storage. The chemicals were acetic acid, boric acid, bleaching powder, lactic acid, calcium hydroxide, calcium chloride, potassium chloride and sodium hypo-chloride. Among eight  chemicals only three chemicals viz. acetic acid, boric acid and bleaching powder showed bactericidal activity against potato soft rot bacteria  Pectobacterium carotovorum subsp. carotovorum (E. carotovora subsp. carotovora) P-138 in vitro. Based on the results of in vitro experiment three chemicals, acetic acid, boric acid and bleaching powder were used to control soft rot disease of potato in storage. Fresh potato tubers were dipped in 0.2% solution/suspensions of acetic acid, boric acid and bleaching powder for 30 min. Then soft rot bacteria Pectobacterium carotovorum subsp. carotovorum P-138 was inoculated on potato. Finally potatoes were stored for 22 weeks in net bags in sterilized condition. All the three chemicals significantly decreased the infection rate, loss in weight and increased percentage of disease reduction (PDR) of potato. Boric acid was the most effective in controlling the soft rot disease of potato in storage followed by acetic acid and bleaching powder. So these chemicals may be used for seed purpose storage of potato tubers for year round storage at farmer’s level.Bangladesh J. Sci. Ind. Res. 52(2), 135-140, 2017


Sign in / Sign up

Export Citation Format

Share Document